Skip to main content
Log in

Exploring lump soliton solutions and wave interactions using new Inverse \((G'/G)\)-expansion approach: applications to the (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this research article, we propose a novel approach called the “ new Inverse \((G'/G)\)-Expansion Method” to discover new exact soliton solutions for the (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain (HFSC) equation. By employing the proposed method, we successfully derive various set of new exact soliton solutions for the HFSC equation. These soliton solutions of the HFSC equation find valuable applications in various fields, including optical fiber communications, plasma physics, condensed matter physics, and nonlinear dynamics. To gain a visual understanding and illustrate the nature of the derived soliton solutions, we present 3-dimensional plots, contour plots, and 2-dimensional plots. Through these visualizations, we comprehensively observe and analyze various structures, including lump solitons, interactions of lumps with waves, periodic solitons, breather-type solitons, and solitary waves. To establish a connection between the depicted graphics and real-world phenomena, we incorporate images of transverse waves in a rope, waves on the ocean’s surface, the oscillations within the ocean depths, and bubbly waves in the application section. These real-world examples help us to bridge the gap between theoretical soliton behavior and physical occurrences, providing a deeper insight into the significance and applicability of our findings. These results significantly enhance our understanding of the (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation, and also demonstrate the effectiveness of the novel Inverse \((G'/G)\)-expansion method in extracting exact soliton solutions under specific constraint conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The entire data set used to support the study’s findings is available in the article’s supplementary materials.

References

  1. Shen, T., Bao, T.: Lax integrability and exact solutions of the generalized (3+1) dimensional Ito equation. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08797-w

    Article  Google Scholar 

  2. Wazwaz, A.M.: New (3 + 1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Article  Google Scholar 

  3. Kumar, S., Niwas, M.: New optical soliton solutions of Biswas–Arshed equation using the generalised exponential rational function approach and Kudryashov’s simplest equation approach. Pramana-J. Phys. 96(204), 1–18 (2022)

    Google Scholar 

  4. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons and Fractals. 30, 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  6. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn. 110, 693–704 (2022). https://doi.org/10.1007/s11071-022-07647-5

    Article  Google Scholar 

  7. Lu, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    Article  MATH  Google Scholar 

  8. Alquaran, M.: Classification of single-wave and bi-wave motion through fourth-order equations generated from the Ito model. Phys. Scr. 98(8), 085207 (2023)

    Article  Google Scholar 

  9. Alquaran, M., Smadi, T.A.: Generating new symmetric bi peakon and singular bi periodic profile solutions to the generalized doubly dispersive equation. Opt. Quant. Electron. 55, 1–11 (2023)

    Google Scholar 

  10. Alquran, M., Jaradat, I.: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation. Mathematics 11, 861 (2023)

    Article  Google Scholar 

  11. Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32(02), 2350016 (2023)

    Article  Google Scholar 

  12. Rezazadeh, H., Korkmaz, A., Eslami, M., Liu, J.G.: Extended rational sinh-cosh and sin-cos methods to derive solutions to the coupled Higgs system. Recent Advances in Computational Physics with Fractional Application. (2018), https://doi.org/10.20944/preprints201811.0443.v1

  13. Zhaqilao, Wurile, Bao, X.: Rogue waves on the periodic wave background in the Kadomtsev–Petviashvili I equation. Nonlinear Dyn. (2023) https://doi.org/10.1007/s11071-023-08758-3

  14. Filiz, A., Ekici, M., Sonmezoglu, A.: F-expansion method and new exact solutions of the Schrödinger-KdV equation. Hindawi Publ. Corporat. Sci. World J. 2014, 1–14 (2014)

    Google Scholar 

  15. Alquran, M.: Optical bidirectional wave solutions to new two mode extension of the coupled KdV-Schrodinger equations. Opt. Quant. Electron. 53, 588 (2021)

    Article  Google Scholar 

  16. Khalique, C.M., Biswas, A.: A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simulat. 14, 4033–4040 (2009)

    Article  MATH  Google Scholar 

  17. Kumar, S., Kaur, L., Niwas, M.: Some exact invariant solutions and dynamical structures of multiple solitons for the (2+1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients using Lie symmetry analysis. Chines J. Phys. 71, 518–538 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kumar, S., Ma, W.X., Kumar, A.: Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation. Chines J. Phys. 69, 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  19. Ma, W.X., Jabbar, A.A.: A bilinear Backlund transformation of a (3+1) -dimensional generalized KP equation. Appl. Math. Lett. 25, 1500–1504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, S.J., Lu, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model. Commun. Theor. Phys. 75(5), 055005 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, S.J., Yin, Y.H., Lu, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 107205 (2023)

  22. Niwas, M., Kumar, S.: New plenteous soliton solutions and other form solutions for a generalized dispersive long wave system employing two methodological approaches. Opt. Quant. Electron. (2023). https://doi.org/10.1007/s11082-023-04847-0

    Article  Google Scholar 

  23. Akinyemi, L., Senol, S.M., Osman, M.: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean Eng. Sci. 7, 143–154 (2021)

    Article  Google Scholar 

  24. Chen, Y., Lu, X., Wang, X.L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus. 138, 492 (2023)

    Article  Google Scholar 

  25. Zhao, Y.W., Xia, J., W., Lu, X.: The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dyn. 108, 4195–4205 (2022)

  26. Biswas, A., et. al.: Optical soliton perturbation in magneto-optic waveguides. J. Nonlinear Opt. Phys. Mater. 27 (1), 1850005 (2018)

  27. Alquran, M., Ali, M., Al-Khaled, K.: Solitary wave solutions to shallow water waves arising in fluid dynamics. Nonlinear Stud. 19(4), 555–562 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Jaradat, I., Alquran, M., Ali, M.: A numerical study on weak-dissipative two-mode perturbed Burgers’ and Ostrovsky models: right-left moving waves. Eur. Phys. J. Plus. 133, 164 (2018)

    Article  Google Scholar 

  29. Lu, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106, 1491–1507 (2021)

    Article  Google Scholar 

  30. Ali, M., Alquran, M., Salman, O.B.: A variety of new periodic solutions to the damped (2 + 1)-dimensional Schrödinger equation via the novel modified rational sine-cosine functions and the extended tanh-coth expansion methods. Res. Phys. 37, 1–5 (2022)

    Google Scholar 

  31. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system. Nonlinear Dyn. 111, 18331–18344 (2023). https://doi.org/10.1007/s11071-023-08798-9

    Article  Google Scholar 

  32. Latha, M.M., Vasanthi, C.C.: An integrable model of (2+1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations. Phys. Scr. 89, 065204 (112) (2014)

  33. Liu, W.: Parallel Line Rogue Waves of a (2 + 1)-dimensional nonlinear Schrödinger equation describing the Heisenberg Ferromagnetic Spin Chain. Romanian J. Phys. 62, 118 (1-16) (2017)

  34. Hashemi, M.S.: Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative. Opt. Quant. Electron. 50(79), 1–11 (2018)

    Google Scholar 

  35. Bashar, M.H., Islam, S.M.R.: Exact solutions to the (2 + 1)-Dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods. Phys. Open (2020). https://doi.org/10.1016/j.physo.2020.100027

    Article  Google Scholar 

  36. Guan, B., Chen, S., Liu, Y., Wang, X., Zhao, J.: Wave patterns of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chains in the semiclassical limit . Results in Physics 16, 102834 (1-6) (2020)

  37. Du, X.X., Tian, B., Zhang, C.R., Chen, S.S.: Nonlinear localized waves for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Phys. Scr. 96, 1–8 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the Editor and the referees for their insightful and informative comments. The author, Sachin Kumar, wishes to acknowledge the Institution of Eminence, University of Delhi, India, for financial support in carrying out this research through the Faculty Research Programme Grant-IoE via Ref. No./IoE/2023-24/12/FRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Niwas.

Ethics declarations

Conflicts of interest

The authors declared no conflicting interests or conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Niwas, M. Exploring lump soliton solutions and wave interactions using new Inverse \((G'/G)\)-expansion approach: applications to the (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation. Nonlinear Dyn 111, 20257–20273 (2023). https://doi.org/10.1007/s11071-023-08937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08937-2

Keywords

Navigation