Skip to main content

Advertisement

Log in

Probabilistic maps on bistable vibration energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 17 October 2023

This article has been updated

Abstract

This paper analyzes the impact of parametric uncertainties on the dynamics of bistable energy harvesters, focusing on obtaining statistical information about how each parameter’s variability affects the energy harvesting process. To model the parametric uncertainties, we use a probability distribution derived from the maximum entropy principle, while polynomial chaos is employed to propagate uncertainty. Conditional probabilities and probability maps are obtained to investigate the effect of uncertainty on harvesting energy. We consider different models of bistable energy harvesters that account for nonlinear piezoelectric coupling and asymmetries. Our findings suggest a higher probability of increasing harvested power in the intrawell motion regime as the excitation frequency increases. In contrast, increasing the excitation amplitude and piezoelectric coupling are more likely to increase power in the chaotic and interwell motion regimes, respectively. An illustrative example is presented to emphasize the importance of investigating the influence when all parameters vary simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Code availability

The simulations presented in this paper were performed using the computational code STONEHENGE—Suite for Nonlinear Analysis of Energy Harvesting Systems [33], which is available for free on GitHub [30].

Change history

Notes

  1. Normalization here means zero mean and unit standard deviation.

References

  1. Ali, S.F., Friswell, M.I., Adhikari, S.: Piezoelectric energy harvesting with parametric uncertainty. Smart Mater. Struct. 19(10), 105010 (2010). https://doi.org/10.1088/0964-1726/19/10/105010

    Article  Google Scholar 

  2. Chatterjee, T., Karlicic, D., Adhikari, S., Friswell, M.: Parametric amplification in a stochastic nonlinear piezoelectric energy harvester via machine learning. In: Proceedings of the Society for Experimental Mechanics Series (2022)

  3. Costa, L.G., da Silva Monteiro, L.L., Pacheco, P.M.C.L., Savi, M.A.: A parametric analysis of the nonlinear dynamics of bistable vibration-based piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 32(7), 699–723 (2021). https://doi.org/10.1177/1045389X20963188

    Article  Google Scholar 

  4. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009). https://doi.org/10.1103/PhysRevLett.102.080601

    Article  Google Scholar 

  5. Crestaux, T., Le Maître, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009). https://doi.org/10.1016/j.ress.2008.10.008. Special Issue on Sensitivity Analysis

  6. Cunha, A.: Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework, pp. 127–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55852-3_8

    Book  Google Scholar 

  7. Cunha, A., Jr.: Enhancing the performance of a bistable energy harvesting device via the cross-entropy method. Nonlinear Dyn. 103, 137–155 (2021). https://doi.org/10.1007/s11071-020-06109-0

    Article  Google Scholar 

  8. Cunha, A., Jr., Nasser, R., Sampaio, R., Lopes, H., Breitman, K.: Uncertainty quantification through Monte Carlo method in a cloud computing setting. Comput. Phys. Commun. 185, 1355–1363 (2014). https://doi.org/10.1016/j.cpc.2014.01.006

    Article  Google Scholar 

  9. Daqaq, M., Masana, R., Erturk, A., Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014). https://doi.org/10.1115/1.4026278

    Article  Google Scholar 

  10. duToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45(5), 1126–1137 (2007). https://doi.org/10.2514/1.25047

    Article  Google Scholar 

  11. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009). https://doi.org/10.1063/1.3159815

    Article  Google Scholar 

  12. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach, 2nd edn. Dover Publications, New York (2003)

    MATH  Google Scholar 

  13. Godoy, T., Trindade, M.: Effect of parametric uncertainties on the performance of a piezoelectric energy harvesting device. J. Braz. Soc. Mech. Sci. Eng. 34, 552–560 (2012). https://doi.org/10.1590/S1678-58782012000600003

    Article  Google Scholar 

  14. Huang, D., Zhou, S., Han, Q., Litak, G.: Response analysis of the nonlinear vibration energy harvester with an uncertain parameter. Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn. 234(2), 393–407 (2020). https://doi.org/10.1177/1464419319893211

    Article  Google Scholar 

  15. Jia, Y.: Review of nonlinear vibration energy harvesting: duffing, bistability, parametric, stochastic and others. J. Intell. Mater. Syst. Struct. 31(7), 921–944 (2020). https://doi.org/10.1177/1045389X20905989

    Article  Google Scholar 

  16. Kapur, J., Kesavan, H.: Entropy Optimization Principles with Applications. Academic Press, Cambridge (1992)

    Book  Google Scholar 

  17. Khovanov, I.A.: The response of a bistable energy harvester to different excitations: the harvesting efficiency and links with stochastic and vibrational resonances. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 379(2198), 20200245 (2021). https://doi.org/10.1098/rsta.2020.0245

    Article  Google Scholar 

  18. Koka, A., Zhou, Z., Tang, H., Sodano, H.A.: Controlled synthesis of ultra-long vertically aligned batio3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25(37), 375603 (2014). https://doi.org/10.1088/0957-4484/25/37/375603

    Article  Google Scholar 

  19. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley, NJ (2011)

    Book  MATH  Google Scholar 

  20. Li, Y., Zhou, S., Litak, G.: Uncertainty analysis of excitation conditions on performance of nonlinear monostable energy harvesters. Int. J. Struct. Stab. Dyn. 19(06), 1950052 (2019). https://doi.org/10.1142/S0219455419500524

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Zhou, S., Litak, G.: Robust design optimization of a nonlinear monostable energy harvester with uncertainties. Mechanica 55, 1753–1762 (2020). https://doi.org/10.1007/s11012-020-01216-z

    Article  MathSciNet  Google Scholar 

  22. Li, Y., Zhou, S., Litak, G.: Uncertainty analysis of bistable vibration energy harvesters based on the improved interval extension. J. Vib. Eng. Technol. 8, 297–306 (2020). https://doi.org/10.1007/s42417-019-00134-z

    Article  Google Scholar 

  23. Lopes, V.G., Peterson, J.V.L.L., Cunha, A., Jr.: Nonlinear characterization of a bistable energy harvester dynamical system. In: Belhaq, M. (ed.) Topics in Nonlinear Mechanics and Physics, pp. 71–88. Springer, Singapore (2019)

    Chapter  Google Scholar 

  24. Mahmud, M.A.P., Bazaz, S.R., Dabiri, S., Mehrizi, A.A., Asadnia, M., Warkiani, M.E., Wang, Z.L.: Advances in mems and microfluidics-based energy harvesting technologies. Adv. Mater. Technol. 7(7), 2101347 (2022). https://doi.org/10.1002/admt.202101347

    Article  Google Scholar 

  25. Mallick, D., Constantinou, P., Podder, P., Roy, S.: Multi-frequency mems electromagnetic energy harvesting. Sens. Actuators, A 264, 247–259 (2017). https://doi.org/10.1016/j.sna.2017.08.002

    Article  Google Scholar 

  26. Mann, B., Owens, B.: Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 329(9), 1215–1226 (2010). https://doi.org/10.1016/j.jsv.2009.11.034

    Article  Google Scholar 

  27. Martins, P., Trindade, M., Varoto, P.: Simplified robust and multiobjective optimization of piezoelectric energy harvesters with uncertain parameters. Int. J. Mech. Mater. Des. 18, 63–85 (2022). https://doi.org/10.1007/s10999-021-09586-2

    Article  Google Scholar 

  28. Nagel, J.B., Rieckermann, J., Sudret, B.: Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. Reliab. Eng. Syst. Saf. 195, 106737 (2020). https://doi.org/10.1016/j.ress.2019.106737

    Article  Google Scholar 

  29. Nanda, A., Karami, M., Singla, P.: Uncertainty quantification of energy harvesting systems using method of quadratures and maximum entropy principle. In: Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (2015)

  30. Norenberg, J., Peterson, J., Lopes, V., Luo, R., de la Roca, L., Pereira, M., Ribeiro, J., Cunha Jr., A.: STONEHENGE—suite for nonlinear analysis of energy harvesting systems (2021). https://americocunhajr.github.io/STONEHENGE

  31. Norenberg, J.P., Cunha, A., da Silva, S., Varoto, P.S.: Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn. 109(2), 443–458 (2022). https://doi.org/10.1007/s11071-022-07563-8

    Article  Google Scholar 

  32. Norenberg, J.P., Luo, R., Lopes, V.G., Peterson, J.V.L., Cunha, A.: Nonlinear dynamics of asymmetric bistable energy harvesters. Int. J. Mech. Sci. (2023). https://doi.org/10.1016/j.ijmecsci.2023.108542

  33. Norenberg, J.P., Peterson, J.V., Lopes, V.G., Luo, R., de la Roca, L., Pereira, M., Telles Ribeiro, J.G., Cunha, A.: STONEHENGE—suite for nonlinear analysis of energy harvesting systems. Softw. Impacts 10, 100161 (2021). https://doi.org/10.1016/j.simpa.2021.100161

    Article  Google Scholar 

  34. Oladyshkin, S., Nowak, W.: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106, 179–190 (2012). https://doi.org/10.1016/j.ress.2012.05.002

    Article  Google Scholar 

  35. Palar, P.S., Zuhal, L.R., Shimoyama, K., Tsuchiya, T.: Global sensitivity analysis via multi-fidelity polynomial chaos expansion. Reliab. Eng. Syst. Saf. 170, 175–190 (2018). https://doi.org/10.1016/j.ress.2017.10.013

    Article  Google Scholar 

  36. Panyam, M., Masana, R., Daqaq, M.F.: On approximating the effective bandwidth of bi-stable energy harvesters. Int. J. Non-Linear Mech. 67, 153–163 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.09.002. https://www.sciencedirect.com/science/article/pii/S0020746214001796

  37. Ruiz, R.O., Meruane, V.: Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters. Smart Mater. Struct. 26(6), 065003 (2017). https://doi.org/10.1088/1361-665X/aa6cf3

    Article  Google Scholar 

  38. Seol, M.L., Choi, J.M., Kim, J.Y., Ahn, J.H., Moon, D.I., Choi, Y.K.: Piezoelectric nanogenerator with a nanoforest structure. Nano Energy 2(6), 1142–1148 (2013). https://doi.org/10.1016/j.nanoen.2013.04.006

  39. Sepahvand, K., Marburg, S., Hardtke, H.J.: Uncertainty quantification in stochastic systems using polynomial chaos expansion. Int. J. Appl. Mech. 02(02), 305–353 (2010). https://doi.org/10.1142/S1758825110000524

    Article  Google Scholar 

  40. Soize, C.: Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering. Springer, New York (2017)

    Book  MATH  Google Scholar 

  41. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008). https://doi.org/10.1016/j.ress.2007.04.002. Bayesian Networks in Dependability

  42. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20(16), 1959–1967 (2009). https://doi.org/10.1177/1045389X09343218

    Article  Google Scholar 

  43. Varoto, P.: Dynamic behavior and performance analysis of piezoelastic energy harvesters under model and parameter uncertainties. In: Proceedings of the Society for Experimental Mechanics Series (2019)

  44. Wasserman, L.: All of Nonparametric Statistics. Springer, New York (2007)

    MATH  Google Scholar 

  45. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002). https://doi.org/10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the insightful discussions on the results presented in this paper with Professors Grzegorz Litak (Lublin University of Technology) and Marcelo Savi (Federal University of Rio de Janeiro).

Funding

This research was financially supported by the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico under the Grants 306526/2019-0 and 305476/2022-0, and the Carlos Chagas Filho Research Foundation of Rio de Janeiro State (FAPERJ) under Grants 210.167/2019, 211.037/2019, and 201.294/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Pedro Norenberg.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norenberg, J.P., Cunha, A., da Silva, S. et al. Probabilistic maps on bistable vibration energy harvesters. Nonlinear Dyn 111, 20821–20840 (2023). https://doi.org/10.1007/s11071-023-08864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08864-2

Keywords

Navigation