Skip to main content
Log in

Dynamical analysis and accelerated adaptive backstepping control of MEMS triaxial gyroscope with output constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes an accelerated adaptive backstepping control scheme for a micro-electro-mechanical systems (MEMS) triaxial gyroscope, which has complicated nonlinear behaviors. The mathematical model of the gyroscope with output constraints is established. Its dynamical evolution laws are analyzed through phase diagrams, time histories and Lyapunov exponents. In designing the controller, a type-2 fuzzy wavelet neural network (T2FWNN) is utilized to approximate the nonlinear unknown functions of the system. Then, in backstepping, a speed function is employed to realize the accelerated convergence with less fluctuations and after that, a time-varying barrier Lyapunov function (BLF) is constructed to restrict state variables into the prescribed ranges. Meanwhile, a hyperbolic tangent tracking differentiator (HTTD) is employed to approximate the virtual control inputs with high precision thus reducing the computation complexity in the backstepping framework. The whole controller fuses the T2FWNN, the speed function, the time-varying BLF, the HTTD and the adaptive law into the backstepping scheme. Besides, stability analysis proves that all signals in the closed-loop system are ultimately bounded. Finally, the majority of the simulated results prove that the designed controller not only satisfies the constraints of state variables, but also suppresses any chaotic oscillations with good tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Wang, J., Lou, W., Wang, D., Feng, H.: Design, analysis, and fabrication of silicon-based MEMS gyroscope for high-g shock platform. Microsyst. Technol. 25, 4577–4586 (2019). https://doi.org/10.1007/s00542-019-04596-9

    Article  Google Scholar 

  2. Luo, S., Ma, H., Li, F., Ouakad, H.M.: Dynamical analysis and chaos control of MEMS resonators by using the analog circuit. Nonlinear Dyn. 108, 97–112 (2022). https://doi.org/10.1007/s11071-022-07227-7

    Article  Google Scholar 

  3. Trivedi, S., Shen, T., Chang, C.-Y., Huang, P.-W., Li, S.-S.: Design of piezoelectric MEMS accelerometer module and its application in surface roughness prediction of fused silica substrate. IEEE Sens. J. 21, 21979–21988 (2021). https://doi.org/10.1109/JSEN.2021.3103059

    Article  Google Scholar 

  4. Splith, T., Kaps, A., Stallmach, F.: Phase plot of a gravity pendulum acquired via the MEMS gyroscope and magnetic field sensors of a smartphone. Am. J. Phys. 90, 314–316 (2022). https://doi.org/10.1119/10.0009254

    Article  Google Scholar 

  5. Mostafa, M.Z., Khater, H.A., Rizk, M.R., Bahasan, A.M.: A novel GPS/ RAVO/MEMS-INS smartphone-sensor-integrated method to enhance USV navigation systems during GPS outages. Meas. Sci. Technol. 30, 095103 (2019). https://doi.org/10.1088/1361-6501/ab161c

    Article  Google Scholar 

  6. Lee, J.H., Lee, J.I., Kim, D.H., Nam, K.H., Jeon, T.J., Han, I.H.: Validation of a gyroscope-based wearable device for real-time position monitoring of patients in a hospital. Technol. Health Care. 29, 843–848 (2021). https://doi.org/10.3233/THC-202575

    Article  Google Scholar 

  7. Frolov, S.V., Potlov, A.Y.: An Endoscopic optical coherence tomography system with improved precision of probe positioning. Biomed. Eng. 53, 6–10 (2019). https://doi.org/10.1007/s10527-019-09866-4

    Article  Google Scholar 

  8. Bojja, J., Collin, J., Kirkko-Jaakkola, M., Payne, M., Griffiths, R., Takala, J.: Compact north finding system. IEEE Sens. J. 16, 2554–2563 (2016). https://doi.org/10.1109/JSEN.2016.2518860

    Article  Google Scholar 

  9. Hoang, M.L., Pietrosanto, A.: Yaw/Heading optimization by drift elimination on MEMS gyroscope. Sensor Actuat. A-Phys. 325, 112691 (2021). https://doi.org/10.1016/j.sna.2021.112691

    Article  Google Scholar 

  10. Kokuyama, W., Watanabe, T., Nozato, H., Ota, A.: Angular velocity calibration system with a self-calibratable rotary encoder. Measurement 82, 246–253 (2016). https://doi.org/10.1016/j.measurement.2016.01.011

    Article  Google Scholar 

  11. Solouk, M.R., Shojaeefard, M.H., Dahmardeh, M.: Parametric topology optimization of a MEMS gyroscope for automotive applica-tions. Mech. Syst. Signal Pr. 128, 389–404 (2019). https://doi.org/10.1016/j.ymssp.2019.03.049

    Article  Google Scholar 

  12. Fei, J., Zhou, J.: Robust Adaptive control of MEMS triaxial gyroscope using fuzzy compensator. IEEE Trans. Syst. Man Cybern. B. 42, 1599–1607 (2012). https://doi.org/10.1109/TSMCB.2012.2196039.5

    Article  Google Scholar 

  13. Lestev, A.M.: Combination resonances in mems gyro dynamics. Gyroscopy Navig. 6, 41–44 (2015). https://doi.org/10.1134/S2075108715010083

    Article  Google Scholar 

  14. Hamed, Y.S., El-Sayed, A.T., El-Zahar, E.R.: On controlling the vibrations and energy transfer in MEMS gyroscope system with simul-taneous resonance. Nonlinear Dyn. 83, 1687–1704 (2016). https://doi.org/10.1007/s11071-015-2440-3

    Article  MATH  Google Scholar 

  15. Larkin, K., Ghommem, M., Hunter, A., Abdelkefi, A.: Nonlinear modeling and performance analysis of cracked beam microgyroscopes. Int. J. Mech. Sci. 188, 105965 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105965

    Article  Google Scholar 

  16. Ouakad, H.M.: Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass. Mi-crosyst. Technol. 26, 573–582 (2020). https://doi.org/10.1007/s00542-019-04530-z

    Article  Google Scholar 

  17. Wei, Y., Dong, Y., Huang, X., Zhang, Z.: Nonlinearity measurement for low-pressure encapsulated MEMS gyroscopes by transient response. Mech. Syst. Signal Pr. 100, 534–549 (2018). https://doi.org/10.1016/j.ymssp.2017.07.034

    Article  Google Scholar 

  18. Zhou, J., Wen, C., Wang, W.: Adaptive control of uncertain nonlinear systems with quantized input signal. Automatica 95, 152–162 (2018). https://doi.org/10.1016/j.automatica.2018.05.014

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, L., Luo, S., Yang, G., Dong, R.: Chaos analysis and stability control of the MEMS resonator via the type-2 sequential FNN. Mi-crosyst. Technol. 27, 173–182 (2021). https://doi.org/10.1007/s00542-020-04935-1

    Article  Google Scholar 

  20. Sui, S., Chen, C.L.P., Tong, S.: Event-trigger-based finite-time fuzzy adaptive control for stochastic nonlinear system with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 29, 1914–1926 (2021). https://doi.org/10.1109/TFUZZ.2020.2988849

    Article  Google Scholar 

  21. Luo, S., Lewis, F.L., Song, Y., Ouakad, H.M.: Optimal synchronization of unidirectionally coupled fo chaotic electromechanical devices with the hierarchical neural network. IEEE Trans. Neural Netw. Learn. Syst. 33, 1192–1202 (2022). https://doi.org/10.1109/TNNLS.2020.3041350

    Article  MathSciNet  Google Scholar 

  22. Li, W., Xiao, D., Wu, X., Su, J., Chen, Z., Hou, Z., Wang, X.: Enhanced temperature stability of sensitivity for MEMS gyroscope based on frequency mismatch control. Microsyst. Technol. 23, 3311–3317 (2017). https://doi.org/10.1007/s00542-016-3114-x

    Article  Google Scholar 

  23. Fei, J., Yan, W., Yang, Y.: Adaptive nonsingular terminal sliding mode control of MEMS gyroscope based on backstepping design: adaptive nonsingular terminal sliding mode control. Int. J. Adapt. Control Signal Process. 29, 1099–1115 (2015). https://doi.org/10.1002/acs.2523

    Article  MATH  Google Scholar 

  24. Guo, Y., Xu, B., Zhang, R.: Terminal sliding mode control of MEMS gyroscopes with finite-time learning. IEEE Trans. Neural Netw. Learn. Syst. 32, 4490–4498 (2021). https://doi.org/10.1109/TNNLS.2020.3018107

    Article  MathSciNet  Google Scholar 

  25. Rahmani, M.: MEMS gyroscope control using a novel compound robust control. ISA Trans. 72, 37–43 (2018). https://doi.org/10.1016/j.isatra.2017.11.009

    Article  Google Scholar 

  26. Fei, J., Feng, Z.: Adaptive super-twisting sliding mode control for micro gyroscope based on double loop fuzzy neural network struc-ture. Int. J. Mach. Learn. & Cyber. 12, 611–624 (2021). https://doi.org/10.1007/s13042-020-01191-7

    Article  Google Scholar 

  27. Yan, W., Hou, S., Fang, Y., Fei, J.: Robust adaptive nonsingular terminal sliding mode control of MEMS gyroscope using fuzzy-neural-network compensator. Int. J. Mach. Learn. & Cyber. 8, 1287–1299 (2017). https://doi.org/10.1007/s13042-016-0501-7

    Article  Google Scholar 

  28. Shao, X., Shi, Y.: Neural adaptive control for MEMS gyroscope with full-state constraints and quantized input. IEEE Trans. Ind. In-form. 16, 6444–6454 (2020). https://doi.org/10.1109/TII.2020.2968345

    Article  Google Scholar 

  29. Asad, Y.P., Shamsi, A., Tavoosi, J.: Backstepping-based recurrent type-2 fuzzy sliding mode control for MIMO systems (MEMS triaxi-al gyroscope case study). Int. J. Unc. Fuzz. Knowl. Based Syst. 25, 213–233 (2017). https://doi.org/10.1142/S0218488517500088

    Article  Google Scholar 

  30. Vafaie, R.H., Mohammadzadeh, A., Piran, M.J.: A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dyn. 106, 381–403 (2021). https://doi.org/10.1007/s11071-021-06830-4

    Article  Google Scholar 

  31. Zhou, Q., Zhao, S., Li, H., Lu, R., Wu, C.: Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans. Neural Netw. Learn. Syst. 30, 3611–3620 (2019). https://doi.org/10.1109/TNNLS.2018.2869375

    Article  MathSciNet  Google Scholar 

  32. Tognetti, E.S., de Oliveira, G.A.: Robust state feedback-based design of PID controllers for high-order systems with time-delay and parametric uncertainties. J. Control Autom. Electr. Syst. 33, 382–392 (2022). https://doi.org/10.1007/s40313-021-00846-2

    Article  Google Scholar 

  33. Wang, C., Ji, X., Zhang, Z., Zhao, B., Quan, L., Plummer, A.R.: Tracking differentiator based back-stepping control for valve-controlled hydraulic actuator system. ISA Trans. 119, 208–220 (2022). https://doi.org/10.1016/j.isatra.2021.02.028

    Article  Google Scholar 

  34. Zhu, G., Nie, L., Lv, Z., Sun, L., Zhang, X., Wang, C.: Adaptive fuzzy dynamic surface sliding mode control of large-scale power sys-tems with prescribe output tracking performance. ISA Trans. 99, 305–321 (2020). https://doi.org/10.1016/j.isatra.2019.08.063

    Article  Google Scholar 

  35. Luo, S., Song, Y., Lewis, F.L., Garrappa, R.: Neuroadaptive optimal fixed-time synchronization and its circuit realization for unidirec-tionally coupled FO self-sustained electromechanical seismograph systems. IEEE Trans. Cybern. 53, 2454–2466 (2023). https://doi.org/10.1109/TCYB.2021.3121069

    Article  Google Scholar 

  36. Luo, S., Lewis, F.L., Song, Y., Garrappa, R.: Dynamical analysis and accelerated optimal stabilization of the fractional-order self-sustained electromechanical seismograph system with fuzzy wavelet neural network. Nonlinear Dyn. 104, 1389–1404 (2021). https://doi.org/10.1007/s11071-021-06330-5

    Article  Google Scholar 

  37. Guo, X., Xu, W., Wang, J., Park, J.H., Yan, H.: BLF-based neuroadaptive fault-tolerant control for nonlinear vehicular platoon with time-varying fault directions and distance restrictions. IEEE Trans. Intell. Transp. Syst. 23, 12388–12398 (2022). https://doi.org/10.1109/TITS.2021.3113928

    Article  Google Scholar 

  38. Zirkohi, M.M.: Adaptive backstepping control design for MEMS gyroscope based on function approximation techniques with input saturation and output constraints. Comput. Electr. Eng. 97, 107547 (2022). https://doi.org/10.1016/j.compeleceng.2021.107547

    Article  Google Scholar 

  39. Zhang, R., Xu, B., Zhao, W.: Finite-time prescribed performance control of MEMS gyroscopes. Nonlinear Dyn. 101, 2223–2234 (2020). https://doi.org/10.1007/s11071-020-05959-y

    Article  Google Scholar 

  40. Sun, J., Yi, J., Pu, Z.: Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations. IEEE Trans. Fuzzy Syst. 30, 1114–1128 (2022). https://doi.org/10.1109/TFUZZ.2021.3052610

    Article  Google Scholar 

  41. Huang, X., Song, Y., Lai, J.: Neuro-adaptive control with given performance specifications for strict feedback systems under full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. 30, 25–34 (2019). https://doi.org/10.1109/TNNLS.2018.2821668

    Article  MathSciNet  Google Scholar 

  42. Zhao, K., Song, Y., Chen, C.L.P., Chen, L.: Adaptive asymptotic tracking with global performance for nonlinear systems with unknown control directions. IEEE Trans. Automat. Contr. 67, 1566–1573 (2022). https://doi.org/10.1109/TAC.2021.3074899

    Article  MathSciNet  MATH  Google Scholar 

  43. de Souza, S.L.T., Caldas, I.L.: Calculation of Lyapunov exponents in systems with impacts. Chaos, Solitons Fractals 19, 569–579 (2004). https://doi.org/10.1016/S0960-0779(03)00130-9

    Article  MATH  Google Scholar 

  44. Zhang, Z., Liu, Y., Sieber, J.: Calculating the Lyapunov exponents of a piecewise-smooth soft impacting system with a time-delayed feedback controller. Commun. Nonlinear Sci. Numer. Simul. 91, 105451 (2020). https://doi.org/10.1016/j.cnsns.2020.105451

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Q., Osman, W.M., Chen, C.: A New 6D Hyperchaotic System with Four Positive Lyapunov Exponents Coined. Int. J. Bifurcation Chaos. 25, 1550060 (2015). https://doi.org/10.1142/S0218127415500601

    Article  MathSciNet  MATH  Google Scholar 

  46. Yue, Y., Xie, J.: Lyapunov exponents and coexistence of attractors in vibro-impact systems with symmetric two-sided rigid constraints. Phys. Lett. A. 373, 2041–2046 (2009). https://doi.org/10.1016/j.physleta.2009.04.009

    Article  MATH  Google Scholar 

  47. Li, H., Wang, L., Du, H., Boulkroune, A.: Adaptive fuzzy backstepping tracking control for strict-feedback systems with input Delay. IEEE Trans. Fuzzy Syst. 25, 642–652 (2017). https://doi.org/10.1109/TFUZZ.2016.2567457

    Article  Google Scholar 

  48. Abiyev, R., Abizada, S.: Type-2 fuzzy wavelet neural network for estimation energy performance of residential buildings. Soft Comput. 25, 11175–11190 (2021). https://doi.org/10.1007/s00500-021-05873-4

    Article  Google Scholar 

  49. Mohammadzadeh, A., Zhang, W.: Dynamic programming strategy based on a type-2 fuzzy wavelet neural network. Nonlinear Dyn. 95, 1661–1672 (2019). https://doi.org/10.1007/s11071-018-4651-x

    Article  MATH  Google Scholar 

  50. Mohammadzadeh, A., Castillo, O., Band, S.S., Mosavi, A.: A novel fractional-order multiple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 23, 1633–1651 (2021). https://doi.org/10.1007/s40815-021-01058-1

    Article  Google Scholar 

  51. Luo, S., Li, J., Li, S., Hu, J.: Dynamical analysis of the fractional-order centrifugal flywheel governor system and its accelerated adaptive stabilization with the optimality. Int. J. Elec. Power Energ. Syst. 118, 105792 (2020). https://doi.org/10.1016/j.ijepes.2019.105792

    Article  Google Scholar 

  52. Li, F., Luo, S., Yang, G., Ouakad, H.M.: Dynamical analysis and accelerated adaptive backstepping funnel control for dual-mass MEMS gyroscope under event trigger. Chaos, Solitons Fractals 168, 113116 (2023). https://doi.org/10.1016/j.chaos.2023.113116

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 52065008), Science and Technology Planning Project of Guizhou Province (No. [2021]5634), Innovation and Entrepreneurship Program for High-Level Talents of Guizhou Province (No. (2021)08) and International Influence Improvement Plan of Subject Double Promotion of Guizhou University (No. GDXKBZJH-YB-2023-24).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Luo.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Luo, S., He, S. et al. Dynamical analysis and accelerated adaptive backstepping control of MEMS triaxial gyroscope with output constraints. Nonlinear Dyn 111, 17123–17140 (2023). https://doi.org/10.1007/s11071-023-08741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08741-y

Keywords

Navigation