Skip to main content
Log in

Dynamic programming strategy based on a type-2 fuzzy wavelet neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an optimal control scheme, based on dynamic programming strategy, is presented for synchronization of uncertain fractional-order chaotic/hyperchaotic systems. In the scheme, a type-2 fuzzy wavelet neural network (T2FWNN) is proposed for estimation of the unknown functions in dynamics of system. For solving the fractional optimal control problem, fractional-order derivative is approximated by using Oustaloup recursive approximation method. Simulation studies verify the effectiveness of the proposed control scheme and the proposed T2FWNN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang, C., Cao, J.: Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system. Stat. Mech. Appl. Phys. A 473, 262–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order chaotic complex nonlinear systems with time delays. J. Comput. Nonlinear Dyn. 11(3), 031016 (2016)

    Article  MATH  Google Scholar 

  3. Zouari, F., Boulkroune, A., Ibeas, A.: Neural adaptive quantized output-feedback control-based synchronization of uncertain time-delay incommensurate fractional-order chaotic systems with input nonlinearities. Neurocomputing 237, 200–225 (2017)

    Article  Google Scholar 

  4. Vaidyanathan, S.: Adaptive integral sliding mode controller design for the control and synchronization of a novel jerk chaotic system. In: Vaidyanathan, S., Lien, C.H. (eds.) Applications of Sliding Mode Control in Science and Engineering, pp. 393–417. Springer, Cham (2017)

    Chapter  Google Scholar 

  5. Hsu, C.-F., Tsai, J.-Z., Chiu, C.-J.: Chaos synchronization of nonlinear gyros using self-learning PID control approach. Appl. Soft Comput. 12(1), 430–439 (2012)

    Article  Google Scholar 

  6. Lin, T.-C., Kuo, C.-H.: \({H_\infty }\) synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Trans. 50(4), 548–556 (2011)

    Article  Google Scholar 

  7. Lin, T.-C., Lee, T.-Y., Balas, V.E.: Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos Solitons Fractals 44(10), 791–801 (2011)

    Article  MATH  Google Scholar 

  8. Lin, T.-C., Lee, T.-Y.: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4), 623–635 (2011)

    Article  Google Scholar 

  9. Lin, T.-C., Chen, M.-C., Roopaei, M.: Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Eng. Appl. Artif. Intell. 24(1), 39–49 (2011)

    Article  Google Scholar 

  10. Qi-Shui, Z., Jing-Fu, B., Yong-Bin, Y., Xiao-Feng, L.: Impulsive control for fractional-order chaotic systems. Chin. Phys. Lett. 25(8), 2812–2815 (2008)

    Article  Google Scholar 

  11. Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 23(1), 183–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, H.-Y., Liang, J.-W.: Adaptive wavelet neural network controller for active suppression control of a diaphragm-type pneumatic vibration isolator. Int. J. Control Autom. Syst. 15(3), 1456–1465 (2017)

    Article  MathSciNet  Google Scholar 

  13. Samadianfard, S., Asadi, E., Jarhan, S., Kazemi, H., Kheshtgar, S., Kisi, O., Sajjadi, S., Abdul Manaf, A.: Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths. Soil Tillage Res. 175, 37–50 (2018)

    Article  Google Scholar 

  14. Song, D., Ding, Y., Li, X., Zhang, B., Mingyu, X.: Ocean oil spill classification with RADARSAT-2 SAR based on an optimized wavelet neural network. Remote Sens. 9(8), 799 (2017)

    Article  Google Scholar 

  15. Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants: a novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(8), 3133–3140 (2008)

    Article  Google Scholar 

  16. Yilmaz, S., Oysal, Y.: Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE Trans. Neural Netw. 21(10), 1599–1609 (2010)

    Article  Google Scholar 

  17. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frederico, G.S.F., Torres, D.F.M.: Noether’s theorem for fractional optimal control problems. arXiv preprint arXiv:math/0603598 (2006)

  19. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frederico, G.S.F., Torres, D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. arXiv preprint arXiv:0712.1844 (2007)

  21. Jumarie, G.: Fractional Hamilton–Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function. J. Appl. Math. Comput. 23(1–2), 215–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Atanackovic, T.M., Stankovic, B.: An expansion formula for fractional derivatives and its application. Fract. Calc. Appl. Anal. 7(3), 365–378 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Jelicic, Z.D., Petrovacki, N.: Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscip. Optim. 38(6), 571–581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tricaud, C., Chen, Y.: Solving fractional order optimal control problems in riots 95—a general purpose optimal control problem solver. In: Proceedings of the 3rd IFAC Workshop on Fractional Differentiation and Its Applications (2008)

  25. Xue, D., Chen, Y.Q., Atherton, D.P.: Linear Feedback Control: Analysis and Sesign with MATLAB, vol. 14. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  26. Pooseh, S., Almeida, R., Torres, D.F.M.: Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698–712 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khader, M.M., Hendy, A.S.: An efficient numerical scheme for solving fractional optimal control problems. Int. J. Nonlinear Sci. 14(3), 287–296 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont (2005)

    MATH  Google Scholar 

  29. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  30. Mahmoud, E.E.: Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters. J. Frankl. Inst. 349(3), 1247–1266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Daniel Pun, W.K., Shawkat Ali, A.B.M.: Unique distance measure approach for k-means (UDMA-km) clustering algorithm. In Tencon 2007—2007 IEEE Region 10 Conference, pp. 1–4. IEEE (2007)

  32. Arqub, O.A., Mohammed, A.L.-S., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20(8), 3283–3302 (2016)

    Article  MATH  Google Scholar 

  33. Arqub, O.A.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput. Appl. 28(7), 1591–1610 (2017)

    Article  Google Scholar 

  34. Arqub, O.A., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 21(23), 7191–7206 (2017)

    Article  MATH  Google Scholar 

  35. Matouk, A.E., Elsadany, A.A.: Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math. Lett. 29, 30–35 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69(1–2), 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nick Street, W., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: Biomedical Image Processing and Biomedical Visualization, vol. 1905, pp. 861–871. International Society for Optics and Photonics, Bellingham (1993)

  38. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  39. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  40. Nguyen, T., Khosravi, A., Creighton, D., Nahavandi, S.: Medical data classification using interval type-2 fuzzy logic system and wavelets. Appl. Soft Comput. 30, 812–822 (2015)

    Article  Google Scholar 

  41. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is partly supported by the National Science Foundation of China (61473183, 61627810, U1509211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Zhang, W. Dynamic programming strategy based on a type-2 fuzzy wavelet neural network. Nonlinear Dyn 95, 1661–1672 (2019). https://doi.org/10.1007/s11071-018-4651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4651-x

Keywords

Navigation