Skip to main content
Log in

A new type-3 fuzzy predictive controller for MEMS gyroscopes

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents a new nonlinear model-based predictive control scheme using fractional-order calculus and interval type-3 (IT3) fuzzy logic systems (FLSs) for Micro-Electro-Mechanical-System gyroscopes (MEMS-Gs). The dynamics of MEMS-G are unknown and perturbed by actuator faults and disturbances. Two IT3-FLSs are used for online modeling of uncertainties and predicting of tracking error. The IT3-FLSs are online optimized by Lyapunov adaptation rules such that the stability and robustness to be guaranteed. Also, the designed compensators adaptively tackle the effects of perturbations and estimation errors. In various conditions such as dynamic perturbations, actuator nonlinearities, tracking of a chaotic system, and tracking of a pulse signal with sharp rising and falling, we examine the capability of the suggested controller and compare with new controllers and other type of FLSs. We show that a well tracking accuracy with the desired transient performance and least overshoot is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The suggested controller is online applied on the dynamic mathematical model of the case-study MEMS-G.

References

  1. Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dynam. 92(3), 1079–1089 (2018)

    Article  Google Scholar 

  2. Luo, S., Li, S., Tajaddodianfar, F.: Adaptive chaos control of the fractional-order arch MEMS resonator. Nonlinear Dynam. 91(1), 539–547 (2018)

    Article  MathSciNet  Google Scholar 

  3. Hamed, Y., El-Sayed, A., El-Zahar, E.: On controlling the vibrations and energy transfer in MEMS gyroscope system with simultaneous resonance. Nonlinear Dynam. 83(3), 1687–1704 (2016)

    Article  MathSciNet  Google Scholar 

  4. Rahmani, M., Rahman, M.H.: A novel compound fast fractional integral sliding mode control and adaptive PI control of a MEMS gyroscope. Microsyst. Technol. 25(10), 3683–3689 (2019)

    Article  Google Scholar 

  5. Guo, Y., Xu, B., Zhang, R.: Terminal sliding mode control of mems gyroscopes with finite-time learning, IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3018107

  6. Rahmani, M., Rahman, M.H., Nosonovsky, M.: A new hybrid robust control of MEMS gyroscope. Microsyst. Technol. 26(3), 853–860 (2020)

    Article  Google Scholar 

  7. Wu, X., Xie, Z., Bai, X., Kwan, T.: Design of a 1-bit MEMS gyroscope using the model predictive control approach. Sensors 19(3), 730 (2019)

    Article  Google Scholar 

  8. Gu, H., Su, W., Zhao, B., Zhou, H., Liu, X.: A design methodology of digital control system for MEMS gyroscope based on multi-objective parameter optimization. Micromachines 11(1), 75 (2020)

    Article  Google Scholar 

  9. Hosseini-Pishrobat, M., Keighobadi, J.: Extended state observer-based robust non-linear integral dynamic surface control for triaxial MEMS gyroscope. Robotica 37(3), 481–501 (2019)

    Article  Google Scholar 

  10. Shi, Y., Shao, X., Yang, W., Zhang, W.: Event-triggered output feedback control for MEMS gyroscope with prescribed performance. IEEE Access 8, 26293–26303 (2020)

    Article  Google Scholar 

  11. Zhang, R., Xu, B., Wei, Q., Yang, T., Zhao, W., Zhang, P.: Serial-parallel estimation model-based sliding mode control of MEMS gyroscopes, IEEE Trans. Syst. Man Cybern. Syst(2020). https://doi.org/10.1109/TSMC.2020.2981807

  12. Hosseini-Pishrobat, M., Keighobadi, J.: Robust vibration control and angular velocity estimation of a single-axis MEMS gyroscope using perturbation compensation. J. Intell. Robotic Syst. 94(1), 61–79 (2019)

    Article  Google Scholar 

  13. Zhang, R., Xu, B., Zhao, W.: Finite-time prescribed performance control of MEMS gyroscopes. Nonlinear Dyn. 101, 2223–2234 (2020). https://doi.org/10.1007/s11071-020-05959-y

  14. Fazeli Asl, S.B., Moosapour, S.S.: Fractional order fuzzy dynamic backstepping sliding mode controller design for triaxial MEMS gyroscope based on high-gain and disturbance observers. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1568917

  15. Shao, X., Shi, Y., Zhang, W., Cao, H.: Neurodynamic approximation-based quantized control with improved transient performances for MEMS gyroscopes: Theory and experimental results. IEEE Trans. Indus. Electron. (2020). https://doi.org/10.1109/TIE.2020.3026297

    Article  Google Scholar 

  16. Shao, X., Cao, Z., Si, H.: Neurodynamic formation maneuvering control with modified prescribed performances for networked uncertain quadrotors. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.3022901

    Article  Google Scholar 

  17. Shao, X., Yue, X., Li, J.: Event-triggered robust control for quadrotors with preassigned time performance constraints. Appl. Mathem. Computat. 392, 125667 (2021)

    Article  MathSciNet  Google Scholar 

  18. Shao, X., Shi, Y., Zhang, W.: Fault-tolerant quantized control for flexible air-breathing hypersonic vehicles with appointed-time tracking performances. IEEE Trans. Aerosp. Electron. Syst. https://doi.org/10.1109/TAES.2020.3040519 (2020)

  19. Shao, X., Si, H., Zhang, W.: Event-triggered neural intelligent control for uncertain nonlinear systems with specified-time guaranteed behaviors. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05357-w

    Article  Google Scholar 

  20. Shao, X., Shi, Y., Zhang, W.: Input-and-measurement event-triggered control for flexible air-breathing hypersonic vehicles with asymmetric partial-state constraints. Nonlinear Dynam. 102(1), 163–183 (2020)

    Article  Google Scholar 

  21. Shao, X., Si, H., Zhang, W.: Fuzzy wavelet neural control with improved prescribed performance for MEMS gyroscope subject to input quantization, Fuzzy Sets Syst. 411, 136–154 (2021). https://doi.org/10.1016/j.fss.2020.08.005

  22. Shao, X., Shi, Y.: Neural adaptive control for MEMS gyroscope with full-state constraints and quantized input, IEEE Trans. Indus. Inform 16(10), 6444–6454 (2020). https://doi.org/10.1109/TII.2020.2968345

  23. Chu, Y., Fei, J., Hou, S.: Adaptive neural backstepping PID global sliding mode fuzzy control of MEMS gyroscope. IEEE Access 7, 37918–37926 (2019)

    Article  Google Scholar 

  24. Si, H., Shao, X., Zhang, W.: MLP-based neural guaranteed performance control for MEMS gyroscope with logarithmic quantizer. IEEE Access 8, 38596–38605 (2020)

    Article  Google Scholar 

  25. Wang, Z., Fei, J.: Novel fuzzy neural nonsingular terminal sliding mode control of MEMS gyroscope. Complexity (2019)

  26. Xu, B., Zhang, R., Li, S., He, W., Shi, Z.: Composite neural learning-based nonsingular terminal sliding mode control of MEMS gyroscopes. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1375–1386 (2019)

    Article  MathSciNet  Google Scholar 

  27. Fei, J., Fang, Y., Yuan, Z.: Adaptive fuzzy sliding mode control for a micro gyroscope with backstepping controller. Micromachines 11(11), 968 (2020)

    Article  Google Scholar 

  28. Liang, X., Fei, J.: Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design. Plos one 14(6), 0218425 (2019)

    Google Scholar 

  29. Wang, H., Yang, Y., Fei, J., Fang, Y.: Adaptive control of micro-electro-mechanical system gyroscope using neural network compensator. Adv. Mech. Eng. 11(12), 1687814019898325 (2019)

    Google Scholar 

  30. Zhang, R., Xu, B., Shi, P.: Output feedback control of micromechanical gyroscopes using neural networks and disturbance observer, IEEE Trans. Neural Netw. Learn. Syst (2020). https://doi.org/10.1109/TNNLS.2020.3030712

  31. Mu, Y., Zhang, H., Su, H., Ren, H.: Unknown input observer synthesis for discrete-time T–S fuzzy singular systems with application to actuator fault estimation, Nonlinera Dynam 100(4), 3399–3412 (2020). https://doi.org/10.1007/s11071-020-05630-6

  32. Khankalantary, S., Rafatnia, S., Mohammadkhani, H.: An adaptive constrained type-2 fuzzy hammerstein neural network data fusion scheme for low-cost sins/gnss navigation system. Appl. Soft Comput. 86, 105917 (2020)

    Article  Google Scholar 

  33. Castillo, O., Melin, P., Ontiveros, E., Peraza, C., Ochoa, P., Valdez, F., Soria, J.: A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Eng. Appl. Art. Intell. 85, 666–680 (2019)

    Article  Google Scholar 

  34. Zhao, T., Zhang, K., Dian, S.: Security control of interval type-2 fuzzy system with two-terminal deception attacks under premise mismatch. Nonlinear Dynam. 102(1), 431–453 (2020)

    Article  Google Scholar 

  35. Peng, W., Li, C., Zhang, G., Yi, J.: Interval type-2 fuzzy logic based transmission power allocation strategy for lifetime maximization of wsns. Eng. Appl. Art. Intell. 87, 103269 (2020)

    Article  Google Scholar 

  36. Bi, J.-W., Liu, Y., Fan, Z.-P.: Representing sentiment analysis results of online reviews using interval type-2 fuzzy numbers and its application to product ranking. Inform. Sci. 504, 293–307 (2019)

    Article  Google Scholar 

  37. Mohammadzadeh, A., Rathinasamy, S.: Energy management in photovoltaic battery hybrid systems: a novel type-2 fuzzy control. Int. J. Hydrogen Energy 45(41), 20970–20982 (2020)

    Article  Google Scholar 

  38. Fazlyab, M., Pedram, M.Z., Salarieh, H., Alasty, A.: Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope. ISA Trans. 52(6), 900–911 (2013)

  39. Asad, Y.P., Shamsi, A., Tavoosi, J.: Backstepping-based recurrent type-2 fuzzy sliding mode control for MIMO systems (MEMS triaxial gyroscope case study). Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 25(02), 213–233 (2017)

    Article  MathSciNet  Google Scholar 

  40. Tavoosi, J.: Sliding mode control of a class of nonlinear systems based on recurrent type-2 fuzzy RBFN. Int. J. Mech. Automat. 7(2), 72–80 (2020)

    Google Scholar 

  41. Nabipour, N., Qasem, S.N., Jermsittiparsert, K.: Type-3 fuzzy voltage management in pv/hydrogen fuel cell/battery hybrid systems. Int. J. Hydrogen Energy 45(56), 32478–32492 (2020)

    Article  Google Scholar 

  42. Mosavi, A., Qasem, S.N., Shokri, M., Mohammadzadeh, A., et al.: Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics, variable irradiation and temperature. Electronics 9(9), 1455 (2020)

    Article  Google Scholar 

  43. Balootaki, M.A., Rahmani, H., Moeinkhah, H., Mohammadzadeh, A.: Non-singleton fuzzy control for multi-synchronization of chaotic systems. Appl. Soft Comput. 106924,(2020)

  44. Mosavi, C.M.A.M.H.T.M.M.S.S.B.A.: Optimal type-3 fuzzy system for solving singular multi-pantograph equations. IE 8: 225692–225702 (2020)

  45. Fei, J., Batur, C.: A novel adaptive sliding mode control with application to MEMS gyroscope. ISA Trans. 48(1), 73–78 (2009)

    Article  Google Scholar 

  46. Fei, J., Yan, W.: Adaptive control of MEMS gyroscope using global fast terminal sliding mode control and fuzzy-neural-network. Nonlinear Dynam. 78(1), 103–116 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Hadjiaghaie Vafaie or Md. Jalil Piran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafaie, R.H., Mohammadzadeh, A. & Piran, M.J. A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dyn 106, 381–403 (2021). https://doi.org/10.1007/s11071-021-06830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06830-4

Keywords

Navigation