Skip to main content
Log in

Revisit of rogue wave solutions in the Yajima–Oikawa system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The general rogue wave solutions for the one-dimensional (1D) Yajima–Oikawa (YO) system are derived through Hirota’s bilinear method and the Kadomtsev–Petviashvili hierarchy reduction method. Different from the previous work, we improve the construction of the differential operators to save the complicated recursiveness and obtain the rogue wave solutions in a purely algebraic expression. Based on this simple expression, the new shape of the third-order rogue waves’ arrangement is found. Moreover, three types of fundamental rogue waves and the rogue wave patterns from second to fifth order are graphically illustrated. In particular, there exist \(N-1\) (\(2\le N \)) polygonal configurations of Nth-order rogue waves for the 1D YO system, which is proven to be related to the Yablonskii–Vorob’ev polynomial hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data will be available from the corresponding author upon reasonable request.

References

  1. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  MATH  Google Scholar 

  2. Wang, X.-B., Han, B.: Characteristics of rogue waves on a soliton background in the general three-component nonlinear Schrödinger equation. Appl. Math. Model. 88, 688–700 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716–1740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A 46, 105202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sheng, H., Yu, G.: Rational solutions of a (2+1)-dimensional sinh-Gordon equation. Appl. Math. Lett. 101, 106051 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, C., Grimshaw, R., Chow, K., Chan, H.: A coupled ôABö system: rogue waves and modulation instabilities. Chaos 25, 103113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, L.-Y., Zhang, Y.-L., Tang, L., Shen, S.-F.: New rational and breather solutions of a higher-order integrable nonlinear Schrödinger equation. Appl. Math. Lett. 122, 107539 (2021)

    Article  MATH  Google Scholar 

  8. Liu, Y., Qian, C., Mihalache, D., He, J.: Rogue waves and hybrid solutions of the Davey-Stewartson I equation. Nonlinear Dyn. 95(1), 839–857 (2019)

    Article  MATH  Google Scholar 

  9. Wu, H.-Y., Jiang, L.-H.: Diverse excitations of two-component rogue waves for a nonautonomous coupled partially nonlocal nonlinear Schrödinger model under a parabolic potential. Nonlinear Dyn. 1–10 (2022)

  10. Müller, P., Garrett, C., Osborne, A.: Rogue waves. Oceanography 18, 66–75 (2005)

    Article  Google Scholar 

  11. Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press on Demand, New York (1995)

    MATH  Google Scholar 

  13. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  14. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

  15. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

  16. Bludov, Y.V., Konotop, V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

  17. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  18. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  19. Bailung, H., Sharma, S., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  20. Wazwaz, A.-M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85(2), 731–737 (2016)

    Article  MathSciNet  Google Scholar 

  21. Wazwaz, A.-M.: Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. 1–6 (2022)

  22. Huang, Q., Ruan, C., Huang, Z., Huang, J.: Soliton solutions to a reverse-time non-local nonlinear Schrödinger differential equation. Pramana J. Phys. 97, 14 (2023)

    Article  Google Scholar 

  23. Wazwaz, A.-M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Article  Google Scholar 

  24. Wei, B., Liang, J.: Multiple dark and antidark soliton interactions in a space shifted PT symmetric nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 109(4), 2969–2978 (2022)

    Article  Google Scholar 

  25. Zhang, Y., Rao, J., Porsezian, K., He, J.: Rational and semi-rational solutions of the Kadomtsev-Petviashvili-based system. Nonlinear Dyn. 95(2), 1133–1146 (2019)

    Article  MATH  Google Scholar 

  26. Rao, J., Mihalache, D., He, J.: Dynamics of rogue lumps on a background of two-dimensional homoclinic orbits in the Fokas system. Appl. Math. Lett. 134, 108362 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fang, Y., Wu, G.-Z., Kudryashov, N.A., Wang, Y.-Y., Dai, C.-Q.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fractals 158, 112118 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fang, Y., Wu, G.-Z., Wen, X.-K., Wang, Y.-Y., Dai, C.-Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Article  Google Scholar 

  29. Wen, X.-K., Wu, G.-Z., Liu, W., Dai, C.-Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. 1–10 (2022)

  30. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 25, 16–43 (1983)

    MATH  Google Scholar 

  31. Ohta, Y., Yang, J.: Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  Google Scholar 

  32. Rao, J., He, J., Cheng, Y.: The Davey-Stewartson I equation: doubly localized two-dimensional rogue lumps on the background of homoclinic orbits or constant. Lett. Math. Phys. 112(4), 1–25 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, Z., Chen, H., Dai, Z.: Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Lett. 37, 34–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rao, J., He, J., Malomed, B.A.: Resonant collisions between lumps and periodic solitons in the Kadomtsev-Petviashvili I equation. J. Math. Phys. 63(1), 013510 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, B., Yang, J.: General rogue waves in the Boussinesq equation. Phys. Soc. Jpn. 89, 024003 (2020)

    Article  Google Scholar 

  36. Feng, B.-F., Shi, C., Zhang, G., Wu, C.: Higher-order rogue wave solutions of the Sasa-Satsuma equation. J. Phys. A 55, 235701 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    Google Scholar 

  38. Yajima, N., Oikawa, M.: Formation and interaction of sonic-Langmuir solitons: inverse scattering method. Prog. Theor. Phys. 56, 1719–1739 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Djordjevic, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chowdhury, A., Tataronis, J.A.: Long wave-short wave resonance in nonlinear negative refractive index media. Phys. Rev. Lett. 100, 153905 (2008)

    Article  Google Scholar 

  41. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Harcourt Brace Jovanovich, New York (1982)

    MATH  Google Scholar 

  42. Zabolotskii, A.: Inverse scattering transform for the Yajima-Oikawa equations with nonvanishing boundary conditions. Phys. Rev. A 80, 063616 (2009)

    Article  Google Scholar 

  43. Nicholson, D.R., Goldman, M.V.: Damped nonlinear Schrödinger equation. Phys. Fluids 19, 1621–1625 (1976)

    Article  MathSciNet  Google Scholar 

  44. Grimshaw, R.H.J.: The modulation of an internal gravity-wave packet, and the resonance with the mean motion. Stud. Appl. Math. 56, 241–266 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Jpn. 52, 1982–1995 (1983)

    Article  MathSciNet  Google Scholar 

  46. Kanna, T., Sakkaravarthi, K., Tamilselvan, K.: General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions. Phys. Rev. E 88, 062921 (2013)

    Article  Google Scholar 

  47. Chen, J., Chen, Y., Feng, B.-F., Maruno, K.-i.: Rational solutions to two-and one-dimensional multicomponent Yajima–Oikawa systems. Phys. Lett. A 379, 1510–1519 (2015)

  48. Ma, Y.-C.: The complete solution of the long-wave-short-wave resonance equations. Stud. Appl. Math. 59, 201–221 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ma, Y.-C., Redekopp, L.: Some solutions pertaining to the resonant interaction of long and short waves. Phys. Fluids 22, 1872–1876 (1979)

  50. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, London (2004)

    Book  MATH  Google Scholar 

  51. Li, R., Geng, X.: A matrix Yajima-Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions. Commun. Nonlinear Sci. Numer. Simul. 90, 105408 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen, Y.-X., Ou-Yang, F.-Y.: Excitation management of crossed Akhmediev and Ma breather for a nonautonomous partially nonlocal Gross-Pitaevskii equation with an external potential. Nonlinear Dyn. 100(2), 1543–1550 (2020)

  53. Chen, J., Chen, Y., Feng, B.-F., Maruno, K.-I., Ohta, Y.: General high-order rogue waves of the (1+ 1)-dimensional Yajima-Oikawa system. J. Phys. Soc. Jpn. 87, 094007 (2018)

    Article  Google Scholar 

  54. Yang, B., Yang, J.: General rogue waves in the three-wave resonant interaction systems. IMA J. Appl. Math. 86, 378–425 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, C., Zhang, G., Shi, C., Feng, B.-F.: General rogue wave solutions to the Sasa-Satsuma equation. arXiv:2206.02210 (2022)

  56. Cheng, Y.: Constraints of the Kadomtsev-Petviashvili hierarchy. J. Math. Phys. 33(11), 3774–3782 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, B., Yang, J.: Universal rogue wave patterns associated with the Yablonskii-Vorob’ev polynomial hierarchy. Physica D 425, 132958 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, B., Yang, J.: Rogue wave patterns in the nonlinear Schrödinger equation. Physica D 419, 132850 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Changyan Shi and Chengfa Wu for the helpful discussions. The authors are grateful to the anonymous referees for a number of valuable suggestions to improve the readability of the paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11701382, 11971288, 12201420, and 12231013) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxing Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: the proof of Lemma 2

Appendix: the proof of Lemma 2

In this appendix, we give the proof of Lemma 2.

  1. 1.

    Recalling (53), we can rewrite \(\sigma _n\) as

    $$\begin{aligned} \begin{aligned} \sigma _{n} =&\left| \begin{array}{cc} {\textbf{O}}_{N \times N} &{} \Phi _{N \times 2 N} \\ -\Psi _{2 N \times N} &{} {\textbf{I}}_{2 N \times 2 N} \end{array}\right| , \end{aligned} \end{aligned}$$
    (63)

    where

    $$\begin{aligned} \Phi _{i,j}=\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{j-1} S_{2i-j}\left( \hat{{\varvec{x}}}^{+}(n)+(j-1) {\varvec{s}}\right) , \end{aligned}$$

    and

    $$\begin{aligned} \Psi _{i,j}=\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{i-1} S_{2j-i}\left( \hat{{\varvec{x}}}^{-}(n)+(i-1) \varvec{s^*}\right) . \end{aligned}$$

    By using the similar technique in [58], we find

    $$\begin{aligned} \sigma _n=\lambda _3\left| \begin{array}{cc} {\textbf{O}}_{N_{0} \times N_{0}} &{} {\hat{\Phi }}_{N_{0} \times 2 N_{0}} \\ -\Psi _{2 N_{0} \times N_{0}} &{} {\textbf{I}}_{2 N_{0} \times 2 N_{0}} \end{array}\right| \left[ 1+O\left( \epsilon _{2 m+1}^{-1}\right) \right] ,\nonumber \\ \end{aligned}$$
    (64)

    where \(\lambda _3\) is a multiplication of a constant dependent of (mN), \({\hat{\Phi }}_{i,j}=\left( \vert p_1\vert /(p_0 + p^*_0)\right) ^{j-1} S_{2i-j}\left( \hat{{\varvec{y}}}^{+}(n)+(j-1) {\varvec{s}}\right) \), \({\hat{\Psi }}_{i,j}=\left( \vert p_1\vert /(p_0 + p^*_0)\right) ^{i-1} S_{2j-i}\left( \hat{{\varvec{y}}}^{-}(n)+(i-1) \varvec{s^*}\right) \), \(\hat{{\varvec{y}}}^{+}(n) = \hat{{\varvec{x}}}^{+}(n)-(0, 0, \ldots ,\epsilon _{2\,m+1}, \ldots ,0)\), \(\hat{{\varvec{y}}}^{-}(n) = \hat{{\varvec{x}}}^{-}(n)-\left( 0, 0, \ldots ,\epsilon _{2\,m+1}^*, \ldots ,0\right) \) and \(\nu _0=N-N_0\). After rewriting \({\varvec{s}}\) as \(\varvec{s_{\text{ odd } }} + \varvec{s_{\text{ even } }}\), the matrix elements of \(\sigma _n\) can be reduced to

    $$\begin{aligned} {\hat{\Phi }}_{i, j}= & {} \left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{j-1} \nonumber \\{} & {} S_{2 i-j}\left[ \varvec{{\hat{y}}}^{+}+(j-1) {\varvec{s}}+v_{0} {\varvec{s}}_{o d d}\right] \end{aligned}$$
    (65)

    and

    $$\begin{aligned} {\hat{\Psi }}_{i, j}= & {} \left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{i-1} \nonumber \\{} & {} S_{2 j-i}\left[ \varvec{{\hat{y}}}^{-}+(i-1) {\varvec{s}}+v_{0} {\varvec{s}}_{o d d}\right] \end{aligned}$$
    (66)

    where \({\varvec{s}}_{\text{ odd } }=\left( s_{1}, 0, s_{3},0, \ldots \right) \). Furthermore, by taking the variable replacements \({\hat{\epsilon }}_{2 r-1}=\epsilon _{2 r-1}+\left( N-N_{0}\right) s_{2 r-1}\) and \({\hat{\epsilon }}^*_{2 r-1}=\epsilon ^*_{2 r-1}+\left( N-N_{0}\right) s^*_{2 r-1}\), \(\sigma _n\) yield an expression for a \(N_0\)th-order rouge wave with internal parameters \(({\hat{\epsilon }}_1,{\hat{\epsilon }}_2,{\hat{\epsilon }}_3,\dots ,{\hat{\epsilon }}_{2 N_0 -1})\). Here, the approximation error is \(O\left( \epsilon _{2\,m+1}^{-1}\right) \).

  2. 2.

    Far away from the origin and \(\sqrt{x^{2}+t^{2}}=O\left( \left| \epsilon _{2\,m+1}\right| ^{1 /(2\,m+1)}\right) \), we get

    $$\begin{aligned} S_{k}\left( {\varvec{x}}^{+}(n)+v {\varvec{s}}\right)= & {} S_{k}({\textbf{v}})\left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] , \nonumber \\{} & {} \left| \epsilon _{2 m+1}\right| \gg 1, \end{aligned}$$
    (67)

    where \({\textbf{v}}=\left( \nu _1 x - \gamma _1 \textrm{i} t, 0, \ldots , 0, \epsilon _{2\,m+1}, 0, \ldots \right) \). After recalling the definition of Schur polynomial (43) and \( p_{k}^{[m]}(z)\) (56), the relationship between them can be revealed as

    $$\begin{aligned} S_{k}({\textbf{v}})=\Omega ^{k}p_{k}^{[m]}(z), \end{aligned}$$
    (68)

    where \(\Omega =(-(2 m+1)/(2^{2 m}) \epsilon _{2 m+1})^{ 1 /(2 m+1)}\) and \( z=\Omega ^{-1}( \nu _1 x - \gamma _1 \textrm{i} t)\).Let \(z_{0}=\Omega ^{-1}\left( \nu _1{\tilde{x}}_{0}-\gamma _1 \textrm{i} {\tilde{t}}_{0}\right) \) to be a root of the polynomial \(Q_{N}^{[m]}(z)\). When z is not at or near \(z_0\), we have

    $$\begin{aligned} \begin{aligned}&\det _{1 \le i, j \le N}\left[ S_{2 i-j}\left( \hat{{\varvec{x}}}^{+}(n)+j {\textbf{s}}\right) \right] \\&\sim c_{N}^{-1} \Omega ^{\frac{N(N+1)}{2}} Q_{N}^{[m]}(z),\quad \left| \epsilon _{2 m+1}\right| \gg 1. \end{aligned} \end{aligned}$$
    (69)

    Likewise,

    $$\begin{aligned} \begin{aligned}&\det _{1 \le i, j \le N}\left[ S_{2 i-j}\left( \hat{{\varvec{x}}}^{-}(n)+j \mathbf {s^*}\right) \right] \\&\sim c_{N}^{-1} (\Omega ^*)^{\frac{N(N+1)}{2}} Q_{N}^{[m]}(z^*),\quad \left| \epsilon _{2 m+1}\right| \gg 1. \end{aligned} \end{aligned}$$
    (70)

    Since the highest order term of \(\epsilon _{2m+1}\) comes from the index choices \(v=(0,1, \ldots , N-1)\), i.e., \(v_j = j-1\), it can be derived that when (xt) is not at or near (xt) locations \(({\tilde{x}}_0, {\tilde{t}}_0)\),

    $$\begin{aligned} \sigma _n \sim \vert \chi \vert ^2 \left| \epsilon _{2m+1} \right| ^{\frac{N(N+1)}{2m+1}}\left| Q_{N}^{[m]}(z)\right| ^{2},\quad \left| \epsilon _{2 m+1}\right| \gg 1, \end{aligned}$$
    (71)

    where

    $$\begin{aligned} \chi =c_{N}^{-1}\left( \frac{\vert p_1\vert }{p_0 + p^*_0} \right) ^{\frac{N(N-1)}{2}} \left( -\frac{2m+1}{2^{2m}}\right) ^{\frac{N(N+1)}{2(2m+1)}}. \end{aligned}$$
    (72)

    Due to the independence between \(\chi \) and n, we found \(\sigma _{1}/\sigma _{0}\sim 1\), i.e., the solution \(S_N(x,t)\) is approximated as the constant background \(e^{\textrm{i}\left[ \alpha x+\left( h+\alpha ^{2}\right) t\right] }\). Moreover, from the asymptotic analysis above, it can be concluded that the highest order term of \(\epsilon _{2m+1}\) vanishes when (xt) is near \(({\tilde{x}}_0, {\tilde{t}}_0)\). To derive the leading-order term of \(\epsilon _{2m+1}\) which determines the approximation of \(\sigma _n\), we let

    $$\begin{aligned} S_{k}\left( \hat{{\varvec{x}}}^{+}(n)+\nu {\varvec{s}}\right) =S_{k}(\hat{{\textbf{v}}})\left[ 1+O\left( \epsilon _{2 m+1}^{-2 /(2 m+1)}\right) \right] ,\nonumber \\ \end{aligned}$$
    (73)

    where

    $$\begin{aligned}{} & {} \hat{{\textbf{v}}}=\left( {\hat{x}}^{+}_1 + v s_1, 0, \ldots , 0, \epsilon _{2 m+1}, 0, \ldots \right) \nonumber \\{} & {} =\left( \nu _1 x - \gamma _1 \textrm{i} t+n u_1 + \epsilon _1 + v s_1,\right. \nonumber \\{} & {} \left. 0, \ldots , 0, \epsilon _{2 m+1}, 0, \ldots \right) . \end{aligned}$$
    (74)

    By denoting \({\hat{z}}=\Omega ^{-1} {\hat{x}}_{1}^{+}\), the above relations indicate that

    $$\begin{aligned}{} & {} S_{k}\left( \hat{{\varvec{x}}}^{+}+v {\varvec{s}}\right) =\Omega ^{k} p_{k}^{[m]}\left( {\hat{z}}+v s_{1} \Omega ^{-1}\right) \nonumber \\{} & {} \left[ 1+O\left( \epsilon _{2 m+1}^{-2 /(2 m+1)}\right) \right] \end{aligned}$$
    (75)

    and

    $$\begin{aligned}{} & {} S_{k}\left( \hat{{\varvec{x}}}^{-}+v \varvec{s^*}\right) =(\Omega ^*)^{k} p_{k}^{[m]}\left( {\hat{z}}^* +v s_{1}^* (\Omega ^*)^{-1}\right) \nonumber \\{} & {} \left[ 1+O\left( \epsilon _{2 m+1}^{-2 /(2 m+1)}\right) \right] . \end{aligned}$$
    (76)

    Then, the leading-order terms of \(\epsilon _{2m+1}\) in \(\sigma _n (x, t)\) come from two index choices which are \(v=(0,1, \ldots , N-1)\) and \(v=(0,1, \ldots , N-2, N)\). For the first index choice \(v=(0,1, \ldots , N-1)\), i.e., \(v_j = j-1\), we get

    $$\begin{aligned} \begin{aligned}&\det _{1 \le i, j \le N}\left[ \left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{v_{j}} S_{2 i-1-v_{j}}\left( \hat{{\varvec{x}}}^{+}(n)+v_{j} {\varvec{s}}\right) \right] \\&= \Omega ^{\frac{N(N+1)}{2}}\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{\frac{N(N-1)}{2}} \det _{1 \le i, j \le N}\\&\quad \left[ p_{2 i-j}^{[m]}\left( {\hat{z}}+(j-1) s_{1} \Omega ^{-1}\right) \right] \\&\quad \times \left[ 1+O\left( \epsilon _{2 m+1}^{-2 /(2 m+1)}\right) \right] . \end{aligned} \end{aligned}$$
    (77)

    Inspired by Yang and Yang, we rewrite \({\hat{z}}+(j-1) s_{1} \Omega ^{-1}\) as

    $$\begin{aligned}{} & {} {\hat{z}}+(j-1) s_{1} \Omega ^{-1}=z_{0}+\Omega ^{-1}\nonumber \\{} & {} \quad \left[ {\hat{x}}_{1}^{+}\left( x-{\tilde{x}}_{0}, t-{\tilde{t}}_{0}\right) +(j-1) s_{1}\right] . \end{aligned}$$
    (78)

    After expanding \(p_{2 i-j}^{[m]}\left( {\hat{z}}+(j-1) s_{1} \Omega ^{-1}\right) \) around \(z_0\) and substituting the expansion into (77), we have

    $$\begin{aligned} \begin{aligned}&\det _{1 \le i, j \le N}\left[ p_{2 i-j}^{[m]}\left( {\hat{z}}+(j-1) s_{1} \Omega ^{-1}\right) \right] \\&=\Omega ^{-1}c_{N}^{-1}\left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) \\&\quad \left[ {\hat{x}}_{1}^{+}\left( x-{\tilde{x}}_{0}, t-{\tilde{t}}_{0}\right) +(N-1) s_{1}\right] +O\left( \Omega ^{-2}\right) . \end{aligned} \end{aligned}$$
    (79)

    By taking a phase shift, the above determinant can be simplified as

    $$\begin{aligned} \begin{aligned}&\det _{1 \le i, j \le N}\left[ p_{2 i-j}^{[m]}\left( {\hat{z}}+(j-1) s_{1} \Omega ^{-1}\right) \right] \\&=\Omega ^{-1}c_{N}^{-1}\left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) {\hat{x}}_{1}^{+}\\&\quad \left( x-{\hat{x}}_{0}, t-{\hat{t}}_{0} \right) +O\left( \Omega ^{-2}\right) . \end{aligned} \end{aligned}$$
    (80)

    Similarly,

    $$\begin{aligned} \begin{aligned}&\det _{1 \le i, j \le N}\left[ p_{2 i-j}^{[m]}\left( {\hat{z}}^{*}+(j-1) s_{1}^{*} (\Omega ^{*})^{-1}\right) \right] \\&=(\Omega ^{*})^{-1}c_{N}^{-1}\left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}^{*}\right) {\hat{x}}_{1}^{-}\\&\quad \left( x-{\hat{x}}_{0}, t-{\hat{t}}_{0} \right) +O\left( \Omega ^{-2}\right) . \end{aligned} \end{aligned}$$
    (81)

    In this way, we obtain the dominant contribution of the first index choice:

    $$\begin{aligned} \begin{aligned}&\vert \chi _{2}\vert ^2\left| \left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) \right| ^{2}\left| \epsilon _{2 m+1}\right| ^{\frac{N(N+1)-2}{2 m+1}} \\&\quad {\hat{x}}_{1}^{+}\left( \tilde{x}, \tilde{t}\right) {\hat{x}}_{1}^{-}\left( \tilde{x}, \tilde{t}\right) \left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] \\&=\vert \chi _{2}\vert ^2\left| \epsilon _{2 m+1}\right| ^{\frac{N(N+1)-2}{2 m+1}} \\&\quad (\nu _1 (\tilde{x}) - \gamma _1 \textrm{i} (\tilde{t})+n u_1 )(\nu ^{*}_1 (\tilde{x}) + \gamma _1^{*} \textrm{i} (\tilde{t})-n u_1^{*} )\\&\quad \times \left| \left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) \right| ^{2}\left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] , \end{aligned} \end{aligned}$$

    where

    $$\begin{aligned} \chi _{2}=c_{N}^{-1}\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{\frac{N(N-1)}{2}}\left( -\frac{2 m+1}{2^{2 m}}\right) ^{\frac{N(N+1)-2}{2(2 m+1)}}, \end{aligned}$$

    \(\tilde{x}=x-{\hat{x}}_0\) and \(\tilde{t}=t-{\hat{t}}_0\). For the second choice of index \(v=(0,1, \ldots , N-2,N)\), we can calculate its dominant contribution by dropping the \(v s_1 \Omega ^{-1} \) terms and replacing z with \(z_0\) directly. Following the similar calculation steps of (77), we get

    $$\begin{aligned}{} & {} \det _{1 \le i, j \le N}\left[ \left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{v_{j}} S_{2 i-1-v_{j}}\left( \hat{{\varvec{x}}}^{+}(n)+v_{j} {\varvec{s}}\right) \right] \nonumber \\{} & {} =\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{\frac{N(N-1)+2}{2}} \Omega ^{\frac{N(N+1)-2}{2}}\nonumber \\{} & {} \times \det _{1 \le i, j \le N}\left[ p_{2 i-1-v_{j}}^{[m]}\left( z_{0}\right) \right] \left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] \nonumber \\{} & {} =\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{\frac{N(N-1)+2}{2}} \Omega ^{\frac{N(N+1)-2}{2}}\left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) \nonumber \\{} & {} \times \left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] , \end{aligned}$$
    (82)

    and

    $$\begin{aligned}{} & {} \det _{1 \le i, j \le N}\left[ \left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{v_{j}} S_{2 i-1-v_{j}}\left( \hat{{\varvec{x}}}^{-}(n)+v_{j} \varvec{s^*}\right) \right] \nonumber \\{} & {} =\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{\frac{N(N-1)+2}{2}} (\Omega ^*)^{\frac{N(N+1)-2}{2}}\nonumber \\{} & {} \times \det _{1 \le i, j \le N}\left[ p_{2 i-1-v_{j}}^{[m]}\left( z_{0}^*\right) \right] \left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] \nonumber \\{} & {} =\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^{\frac{N(N-1)+2}{2}} (\Omega ^*)^{\frac{N(N+1)-2}{2}}\left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}^*\right) \nonumber \\{} & {} \times \left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] . \end{aligned}$$
    (83)

    Then, the dominant contribution of the second index choice is

    $$\begin{aligned}{} & {} \vert \chi _{2}\vert ^2\left( \vert p_1\vert /(p_0 + p^*_0)\right) ^2\left| \left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) \right| ^{2}\\{} & {} \left| \epsilon _{2 m+1}\right| ^{\frac{N(N+1)-2}{2 m+1}} \left[ 1+O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) \right] . \end{aligned}$$

    Therefore, by combining the results of the above two index choices, we can obtain

    $$\begin{aligned} \begin{aligned}&\sigma _n \sim \left( \left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^2+\left( \nu _1 \tilde{x} - \gamma _1 \textrm{i} \tilde{t}+n u_1 \right) \right. \\&\quad \left. \left( \nu ^{*}_1 \tilde{x} + \gamma _1^{*} \textrm{i} \tilde{t}-n u_1^{*} \right) \right) \\&\quad \times \vert \chi _2\vert ^2 \bigg \vert \epsilon _{2 m+1}\bigg \vert ^{\frac{N(N+1)-2}{2 m+1}} \bigg \vert \left[ Q_{N}^{[m]}\right] ^{\prime }\left( z_{0}\right) \bigg \vert ^{2},\\&\quad \bigg \vert \epsilon _{2 m+1}\bigg \vert \gg 1, \end{aligned} \end{aligned}$$
    (84)

    where \(\tilde{x}=x-{\hat{x}}_0\) and \(\tilde{t}=t-{\hat{t}}_0\). Finally, assuming that all nonzero roots are simple, the above leading asymptotic term of \(\sigma _n\) will not be eliminated. It has been proven that when \(\sqrt{x^{2}+t^{2}}=O\left( \left|\epsilon _{2\,m+1} \right|^{1 /(2\,m+1)}\right) \),

    $$\begin{aligned} \begin{aligned} S_N(x,t)=&\,e^{\textrm{i}\left[ \alpha x+\left( h+\alpha ^{2}\right) t\right] }\\&\times \frac{\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^2+\left( \nu _1 \tilde{x} - \gamma _1 \textrm{i} \tilde{t}+ u_1 + \epsilon _1\right) \left( \nu ^{*}_1 \tilde{x} + \gamma _1^{*} \textrm{i} \tilde{t}+ u_1^{*} + \epsilon _1^{*}\right) }{\left( \frac{\vert p_1\vert }{p_0 + p^*_0}\right) ^2+\left( \nu _1 \tilde{x} - \gamma _1 \textrm{i} \tilde{t}+ \epsilon _1\right) \left( \nu ^{*}_1 \tilde{x} + \gamma _1^{*} \textrm{i} \tilde{t}+ \epsilon _1^{*}\right) } +O\left( \epsilon _{2 m+1}^{-1 /(2 m+1)}\right) , \end{aligned} \end{aligned}$$
    (85)

    where \(\tilde{x}=x-{\hat{x}}_0\) and \(\tilde{t}=t-{\hat{t}}_0\), is the first-order rouge wave of 1D YO system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Huang, P., Zhang, G. et al. Revisit of rogue wave solutions in the Yajima–Oikawa system. Nonlinear Dyn 111, 9439–9455 (2023). https://doi.org/10.1007/s11071-023-08306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08306-z

Keywords

Navigation