Skip to main content
Log in

Nth-order smooth positon and breather-positon solutions for the generalized integrable discrete nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the smooth positon and breather-positon solutions of the generalized integrable discrete nonlinear Schrödinger (NLS) equation by the degenerate Darboux transformation (DT). Starting from the zero seed solution, the Nth-order smooth positon solutions are obtained by degenerate DT. The breather solutions including Akhmediev breather, Kuznetsov-Ma breather and space-time periodic breather are derived from the nonzero seed solution. Then the breather-positon solutions are constructed by gradual Taylor series expansion of the eigenfunctions in breather solutions. We study the effect of the coefficient of nonlinear term on these discrete smooth positon solutions and breather-positon solutions, which demonstrates that the interacting region of soliton-positon and breather-positon are highly compressed by higher-order nonlinear effects, but the distance between the two positons has an opposite effect in two waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are including in this published article.

References

  1. Davydov, A.S.: Solitons in molecular systems. Phys. Scripta 20, 387–394 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and fourier analysis. J Math. Phys. 17, 1011–1018 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973)

    Article  Google Scholar 

  5. Kenkre, V.M., Campbell, D.K.: Self-trapping on a dimer: time-dependent solutions of a discrete nonlinear Schrödinger equation. Phys. Rev. B 34, 4959 (1986)

    Article  Google Scholar 

  6. Li, B.Q., Ma, Y.L.: Extende d generalize d Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Li, B.Q., Ma, Y.L.: Interaction properties between rogue wave and breathers to the manakov system arising from stationary self-focusing electromagnetic systems. Chaos Soliton Fract. 156, 111832 (2022)

    Article  MathSciNet  Google Scholar 

  8. Ablowitz, M.J., Ladik, J.F.: A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55, 213–229 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hirota, R.: Nonlinear partial difference equation I. Adifference analogue of the Korteweg-de Vries equation. J. Soc. Jpn. 43, 4124–4166 (1977)

    Google Scholar 

  10. Kruskal, M., Tamizhmani, K.M., Grammaticos, B.: Asymmetric discrete Painlevé equations. Regul. Chaotic Dyn. 5, 273–280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, D.J., Chen, S.T.: Symmetries for the Ablowitz-Ladik hierarchy: part I. four-potential case. Stud. Appl. Math. 125, 393–418 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hietarinta, J., Joshi, N., Nijhoff, F.W.: Discrete systems and integrability. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  13. Feng, B.F., Chen, J.C., Chen, Y., Maruno, K., Ohta, Y.: Integrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation. J. Phys. A: Math. Theor. 48, 385202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ankiewicz, A., Akhmediev, N., Soto-Crespo, J.M.: Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Phys Rev E. 82, 026602 (2010)

    Article  MathSciNet  Google Scholar 

  15. Zhao, H.Q., Yuan, J.Y., Zhu, Z.N.: Integrable semi-discrete Kundu-Eckhaus eqaution: darboux transformation, breather, rogue wave and continuous limit theory. J. Nonlinear Sci. 28, 43–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tsuchida, T.: Integrable discretizations of derivative nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 35, 7827–7847 (2002)

    Article  MATH  Google Scholar 

  17. Feng, B.F., Ling, L.M., Zhu, Z.N.: A focusing and defocusing semi-discrete complex short-pulse equation and its various soliton solutions. Proc. R. Soc Lond. Ser. A 477, 20200853 (2021)

    MathSciNet  Google Scholar 

  18. Sun, H.Q., Zhu, Z.N.: Darboux transformation and soliton solutions of the spatial discrete coupled complex short pulse equation. Phys. D 436, 133312 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, J., Zhang, Y.L., Ma, L.Y.: Multi-rogue wave solutions for a generalized integrable discrete nonlinear Schrödinger equation with higher-order excitations. Nonlin. Dyn. 105, 629–641 (2021)

    Article  Google Scholar 

  20. Li, M., Li, M.H., He, J.S.: Degenerate solutions for the spatial discrete Hirota equation. Nonlin. Dyn. 102, 1825–1836 (2020)

    Article  Google Scholar 

  21. Ohta, Y., Yang, J.K.: General rogue waves in the focusing and defocusing Ablowitz-Ladik equations. J. Phys. A Math. Theor. 47, 255201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Daniel, M., Latha, M.M.: Soliton in discrete and continuum alpha helical proteins with interspine coupling. Phys. Lett. A 252, 92–108 (1999)

    Article  Google Scholar 

  23. Christodoulides, D.N., Joseph, R.J.: Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    Article  Google Scholar 

  24. Wen, X.Y., Wang, D.S.: Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation. Wave Motion 79, 84–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, Y.J., Yang, Y.Q., Li, X.: Darboux-B\(\ddot{a}\)cklund transformation, breather and rogue wave solutions for the discrete Hirota equation. Optik 236, 166647 (2021)

    Article  Google Scholar 

  26. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  27. Terniche, S., Leblond, H., Mihalache, D., Kellou, A.: Fewcycle optical solitons in linearly coupled waveguides. Phys. Rev. A 94, 063836 (2016)

    Article  Google Scholar 

  28. Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    Article  MathSciNet  Google Scholar 

  29. Beutler, R.: Positon solutions of the sine-Gordon equation. J. Math. Phys. 34, 3081–3109 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stahlofen, A.A.: Positons of the modified KortewegCde Vries equation. Ann. Phys. 504, 554–569 (1992)

    Article  Google Scholar 

  31. Maisch, H., Stahlofen, A.A.: Dynamic properties of positons. Phys. Scr. 52, 228–236 (1995)

  32. Stahlofen, A.A., Matveev, V.B.: Positons for the Toda lattice and related spectral problems. J. Phys. A: Math. Gen. 28, 1957–1965 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hu, H.C., Liu, Y.: New positon, negaton and complexiton solutions for the Hirota-Satsuma coupled KdV system. Phys. Lett. A 372, 5795–5798 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, W.J., Xu, S.W., Li, M.H., He, J.S.: Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. Nonlin. Dyn. 97, 2135–2145 (2019)

    Article  MATH  Google Scholar 

  35. Liu, S.Z., Zhang, Y.S., He, J.S.: Smooth positons of the second-type derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 71, 357–361 (2019)

    Article  MATH  Google Scholar 

  36. Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg-de Vries equation. Nonlin. Dyn. 89, 2299–2310 (2017)

    Article  MathSciNet  Google Scholar 

  37. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Waves Rand. Compl. 28, 203–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hu, A., Li, M., He, J.S.: Dynamic of the smooth positons of the higher-order Chen-Lee-Liu equation. Nonlin. Dyn. 104, 4329–4338 (2021)

    Article  Google Scholar 

  39. Daniel, M., Latha, M.M.: Soliton in discrete and continuum alpha helical proteins with higher-order excitations. Phys. A 240, 526–546 (1997)

    Article  Google Scholar 

  40. Yang, J., Fang, M.S., Luo, L., Ma, L.Y.: From a generalized discrete NLS equation in discrete alpha helical proteins to the fourth-order NLS equation. Chaos Soliton Fract. 153, 111600 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Daniel, M., Latha, M.M.: A generalized Davydov soliton model for energy transfer in alpha helical proteins. Physica A 298, 351–370 (2001)

    Article  MATH  Google Scholar 

  42. Priya, N.V., Monisha, S., Senthilvelan, M., Rangarajan, G.: Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger equation. Eur. Phys. J. Plus 137, 646 (2022)

    Article  Google Scholar 

  43. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  MATH  Google Scholar 

  44. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundations of China (Grant No. 12001361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Tian.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tian, H. Nth-order smooth positon and breather-positon solutions for the generalized integrable discrete nonlinear Schrödinger equation. Nonlinear Dyn 111, 5629–5639 (2023). https://doi.org/10.1007/s11071-022-07972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07972-9

Keywords

Navigation