Skip to main content

Advertisement

Log in

Stochastic response and reliability of electromagnetic energy harvester with mechanical impact and Coulomb friction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Combining the complex factors of mechanical impact, Coulomb friction, harmonic excitation, and Gaussian white noise, an electromagnetic energy harvesting system is analytically studied. Based on stochastic averaging, Fokker–Planck–Kolmogorov equation of the probability density function (pdf) and backward Kolmogorov equation of the conditional reliability function are analytically derived. Solutions are correspondingly calculated by means of finite difference method. Numerical results are shown simultaneously for the purpose of verifying the effectiveness of such a semi-analytical procedure. Effects of the system coefficients on the pdfs, conditional reliability function, mean first passage time, and mean square electric current are discussed. It is found that the relation between energy harvesting performance and reliability should be balanced instead of ignoring the influence on system reliability while pursuing the increase of output electric current by tuning the system coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mokhtari, F., Foroughi, J., Zheng, T., Cheng, Z., Spinks, G.M.: Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies. J. Mater. Chem. A 7(14), 8245–8257 (2019). https://doi.org/10.1039/c8ta10964h

    Article  Google Scholar 

  2. Abdelmageed, M.G., El-Bab, A.M.F., Abouelsoud, A.: Design and simulation of pulsatile blood flow energy harvester for powering medical devices. Microelectron. J. 86, 105–113 (2019). https://doi.org/10.1016/j.mejo.2019.02.021

    Article  Google Scholar 

  3. Zhou, X., Liu, G., Han, B., Liu, X.: Different kinds of energy harvesters from human activities. Int. J. Energy Res. 45(4), 4841–4870 (2021). https://doi.org/10.1002/er.6045

    Article  Google Scholar 

  4. Lai, Z., Wang, S., Zhu, L., Zhang, G., Wang, J., Yang, K., Yurchenko, D.: A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mech. Syst. Signal Process. 150, 107212 (2021). https://doi.org/10.1016/j.ymssp.2020.107212

    Article  Google Scholar 

  5. Yang, K., Abdelkefi, A., Li, X., Mao, Y., Dai, L., Wang, J.: Stochastic analysis of a galloping-random wind energy harvesting performance on a buoy platform. Energy Convers. Manage. 238, 114174 (2021). https://doi.org/10.1016/j.enconman.2021.114174

    Article  Google Scholar 

  6. Yuen, K.V., Xu, L.: Efficiency enhancement of electromagnetic energy harvesters for high-rise buildings. Struct. Control Health Monit. 28(6), 2722 (2021). https://doi.org/10.1002/stc.2722

    Article  Google Scholar 

  7. Taghavifar, H.: A novel energy harvesting approach for hybrid electromagnetic-based suspension system of off-road vehicles considering terrain deformability. Mech. Syst. Signal Process. 146, 106988 (2021). https://doi.org/10.1016/j.ymssp.2020.106988

    Article  Google Scholar 

  8. Pan, H., Qi, L., Zhang, Z., Yan, J.: Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review. Appl. Energy 286, 116518 (2021). https://doi.org/10.1016/j.apenergy.2021.116518

    Article  Google Scholar 

  9. Kim, S.H., Thakre, A., Patil, D.R., Park, S.H., Listyawan, T.A., Park, N., Hwang, G.-T., Jang, J., Kim, K.-H., Ryu, J.: Enhancement of energy-harvesting performance of magneto-mechano-electric generators through optimization of the interfacial layer. ACS Appl. Mater. Interfaces 13(17), 19983–19991 (2021). https://doi.org/10.1021/acsami.1c00922

    Article  Google Scholar 

  10. Yu, T., Zhou, S.: Performance investigations of nonlinear piezoelectric energy harvesters with a resonant circuit under white gaussian noises. Nonlinear Dyn. 103(1), 183–196 (2021). https://doi.org/10.1007/s11071-020-06170-9

    Article  MathSciNet  Google Scholar 

  11. He, Q., Daqaq, M.F.: Electric load optimization of a nonlinear mono-stable duffing harvester excited by white noise. Meccanica 51(5), 1027–1039 (2016). https://doi.org/10.1007/s11012-015-0289-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Petromichelakis, I., Psaros, A.F., Kougioumtzoglou, I.A.: Stochastic response determination and optimization of a class of nonlinear electromechanical energy harvesters: a wiener path integral approach. Probab. Eng. Mech. 53, 116–125 (2018). https://doi.org/10.1016/j.probengmech.2018.06.004

    Article  Google Scholar 

  13. Sengha, G., Kenfack, W.F., Siewe, M.S., Tabi, C.B., Kofané, T.C.: Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling. Commun. Nonlinear Sci. Numer. Simul. 90, 105364 (2020). https://doi.org/10.1016/j.cnsns.2020.105364

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, D., Chen, J., Zhou, S., Fang, X., Li, W.: Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method. Sci. China Technol. Sci. 64(6), 1212–1227 (2021). https://doi.org/10.1007/s11431-020-1780-x

    Article  Google Scholar 

  15. Sun, Y., Yang, Y., Zhang, Y., Xu, W.: Probabilistic response of a fractional-order hybrid vibration energy harvester driven by random excitation. Chaos 31(1), 013111 (2021). https://doi.org/10.1063/1.5145178

    Article  MathSciNet  MATH  Google Scholar 

  16. Qian, F., Zhou, S., Zuo, L.: Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020). https://doi.org/10.1016/j.cnsns.2019.104984

    Article  MathSciNet  MATH  Google Scholar 

  17. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018). https://doi.org/10.1016/j.ijengsci.2018.02.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Ahmad, M.M., Khan, N.M., Khan, F.U.: Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism. Int. J. Energy Res. (2021). https://doi.org/10.1002/er.6832

    Article  Google Scholar 

  19. Halim, M.A., Park, J.Y.: Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens. Actuator A Phys. 208(2), 56–65 (2014). https://doi.org/10.1016/j.sna.2013.12.033

    Article  Google Scholar 

  20. Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 20(4), 045004 (2011). https://doi.org/10.1088/0964-1726/20/4/045004

    Article  Google Scholar 

  21. Jacquelin, E., Adhikari, S., Friswell, M.I.: A piezoelectric device for impact energy harvesting. Smart Mater. Struct. 20(10), 105008 (2011). https://doi.org/10.1088/0964-1726/20/10/105008

    Article  Google Scholar 

  22. Le, C.P., Halvorsen, E.: Mems electrostatic energy harvesters with end-stop effects. J. Micromech. Microeng. 22(7), 74013–74024 (2012). https://doi.org/10.1088/0960-1317/22/7/074013

    Article  Google Scholar 

  23. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009). https://doi.org/10.1103/PhysRevLett.102.080601

    Article  Google Scholar 

  24. Lan, C., Qin, W.: Vibration energy harvesting from a piezoelectric bistable system with two symmetric stops. Acta Phys. Sin. Ch. Ed. 64, 210501 (2015). https://doi.org/10.7498/aps.64.210501

    Article  Google Scholar 

  25. Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106(9), 093901 (2015). https://doi.org/10.1063/1.4913606

    Article  Google Scholar 

  26. Haroun, A., Yamada, I., et al.: Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation. J. Sound Vib. 349, 389–402 (2015). https://doi.org/10.1016/j.jsv.2015.03.048

    Article  Google Scholar 

  27. Green, P., Worden, K., Sims, N.: On the identification and modelling of friction in a randomly excited energy harvester. J. Sound Vib. 332(19), 4696–4708 (2013). https://doi.org/10.1016/j.jsv.2013.04.024

    Article  Google Scholar 

  28. He, X., Teh, K.S., Li, S., Dong, L., Jiang, S.: Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sens. Actuator A Phys. 259, 171–179 (2017). https://doi.org/10.1016/j.sna.2017.03.034

    Article  Google Scholar 

  29. Fu, Y., Ouyang, H., Davis, R.B.: Nonlinear dynamics and triboelectric energy harvesting from a three-degree-of-freedom vibro-impact oscillator. Nonlinear Dyn. 92(4), 1985–2004 (2018). https://doi.org/10.1007/s11071-018-4176-3

    Article  Google Scholar 

  30. Fu, Y., Ouyang, H., Davis, R.B.: Effects of electrical properties on vibrations via electromechanical coupling in triboelectric energy harvesting. J. Phys. D Appl. Phys. 53(21), 215501 (2020). https://doi.org/10.1088/1361-6463/ab7792

    Article  Google Scholar 

  31. Lu, Y., Juillard, J., Cottone, F., Galayko, D., Basset, P.: An impact-coupled mems electrostatic kinetic energy harvester and its predictive model taking nonlinear air damping effect into account. J. Microelectromech. Syst. 27(6), 1041–1053 (2018). https://doi.org/10.1109/JMEMS.2018.2876353

    Article  Google Scholar 

  32. Su, M., Xu, W., Yang, G.: Stochastic response and stability of system with friction and a rigid barrier. Mech. Syst. Signal Process. 132, 748–761 (2019). https://doi.org/10.1016/j.ymssp.2019.07.018

    Article  Google Scholar 

  33. Kumar, P., Narayanan, S.: Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators. Nonlinear Dyn. 102(2), 927–950 (2020). https://doi.org/10.1007/s11071-020-05960-5

    Article  Google Scholar 

  34. Liu, L., Xu, W., Yue, X., Qiao, Y.: Reliability of elastic impact system with coulomb friction excited by gaussian white noise. Chaos Soliton Fract. 131, 109513 (2020). https://doi.org/10.1016/j.chaos.2019.109513

    Article  MathSciNet  MATH  Google Scholar 

  35. Dai, Q., Harne, R.L.: Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations. Smart Mater. Struct. 27(1), 015011 (2017). https://doi.org/10.1088/1361-665X/aa9a13

    Article  Google Scholar 

  36. Friswell, M.I., Bilgen, O., Ali, S.F., Litak, G., Adhikari, S.: The effect of noise on the response of a vertical cantilever beam energy harvester. ZAMM Z. Angew. Math. Mech. 95(5), 433–443 (2015). https://doi.org/10.1002/zamm.201300183

    Article  Google Scholar 

  37. Fezeu, G., Fokou, I.M., Buckjohn, C.N.D., Siewe, M.S., Tchawoua, C.: Resistance induced p-bifurcation and ghost-stochastic resonance of a hybrid energy harvester under colored noise. Physica A 557, 124857 (2020). https://doi.org/10.1016/j.physa.2020.124857

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Y., Jin, Y., Li, Y.: Enhanced energy harvesting using time-delayed feedback control from random rotational environment. Physica D 422, 132908 (2021). https://doi.org/10.1016/j.physd.2021.132908

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, Y., Luo, M., Zhu, W.: First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations. Arch. Appl. Mech. 78(7), 501–515 (2008). https://doi.org/10.1007/s00419-007-0174-5

    Article  MATH  Google Scholar 

  40. Renaud, M., Fujita, T., Goedbloed, M., de Nooijer, C., van Schaijk, R.: Improved mechanical reliability of mems electret based vibration energy harvesters for automotive applications. In: Journal of Physics: Conference Series, vol. 557, p. 012071. IOP Publishing (2014). https://doi.org/10.1088/1742-6596/557/1/012071

  41. Zhou, Q., Kim, J.N., Han, K.W., Oh, S.W., Umrao, S., Chae, E.J., Oh, I.: Integrated dielectric-electrode layer for triboelectric nanogenerator based on cu nanowire-mesh hybrid electrode. Nano Energy 59, 120–128 (2019). https://doi.org/10.1016/j.nanoen.2019.02.022

    Article  Google Scholar 

  42. Tsujiura, Y., Suwa, E., Kurokawa, F., Hida, H., Kanno, I.: Reliability of vibration energy harvesters of metal-based PZT thin films. In: Journal of Physics: Conference Series, vol. 557, p. 012096, IOP Publishing (2014). https://doi.org/10.1088/1742-6596/557/1/012096

  43. Eshghi, A.T., Lee, S., Sadoughi, M.K., Hu, C., Kim, Y.C., Seo, J.H.: Design optimization under uncertainty and speed variability for a piezoelectric energy harvester powering a tire pressure monitoring sensor. Smart Mater. Struct. 26(10), 105037 (2017). https://doi.org/10.1088/1361-665X/aa8886

  44. Zhang, J., Gao, L., Xiao, M.: A new hybrid reliability-based design optimization method under random and interval uncertainties. Int. J. Numer. Methods Eng. 121(19), 4435–4457 (2020). https://doi.org/10.1002/nme.6440

    Article  MathSciNet  Google Scholar 

  45. Seong, S., Hu, C., Lee, S.: Design under uncertainty for reliable power generation of piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 28(17), 2437–2449 (2017). https://doi.org/10.1177/1045389X17689945

    Article  Google Scholar 

  46. Zhu, W., Cai, G.: Introduction to Stochastic Dynamics. Science Press, Beijing (2017)

    Google Scholar 

  47. Huang, Z., Zhu, W., Suzuki, Y.: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations. J. Sound Vib. 238(2), 233–256 (2000)

    Article  MathSciNet  Google Scholar 

  48. Zhu, W., Cai, G.: Stochastic Vibration. Science Press, Beijing (1998)

    Google Scholar 

  49. Jin, X., Wang, Y., Chen, M.Z., Huang, Z.: Response analysis of dielectric elastomer spherical membrane to harmonic voltage and random pressure. Smart Mater. Struct. 26(3), 035063 (2017). https://doi.org/10.1088/1361-665X/aa5e44

    Article  Google Scholar 

  50. Xu, M., Wang, Y., Jin, X., Huang, Z., Yu, T.: Random response of vibro-impact systems with inelastic contact. Int. J. Non-linear Mech. 52, 26–31 (2013)

    Article  Google Scholar 

  51. Luan, X., Wang, Y., Jin, X., Huang, Z.: Response evaluation and optimal control for stochastically excited vibro-impact system with hertzdamp contact. J. Vib. Eng. Technol. 7(1), 83–90 (2019)

    Article  Google Scholar 

  52. Feng, J., Che, G., Nie, Y.: Principle of Numerical Analysis. Science Press, Beijing (2001)

    Google Scholar 

  53. Huang, Z., Zhang, L.: Stationary solutions of high dimensional reduced FPK equation using both finite difference method and successive over-relaxation method. Chin. J. Comput. Mech. 25(2), 177–182 (2008). https://doi.org/1007-4708(2008)02-0177-06

  54. Zhu, W., Wu, Y.: First-passage time of duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dyn. 32(3), 291–305 (2003). https://doi.org/10.1023/A:1024414020813

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12072261, 12172286, and 11872305).

Funding

Funding was provided by National Natural Science Foundation of China (Grand Nos. 12072261, 12172286 and 11872305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Ying Zhang.

Ethics declarations

Competing interests

The authors declare this manuscript is original and they have no potential competing interests with respected to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The implicit finite difference approximation to Eq. 36 is

$$\begin{aligned}&\frac{{\partial \left( {{{\bar{m}}_1}p} \right) }}{{\partial H}} = \frac{{8\left[ {{{\left( {{{\bar{m}}_1}} \right) }_{i,j + 1}}{p_{i,j + 1}} - {{\left( {{{\bar{m}}_1}} \right) }_{i,j - 1}}{p_{i,j - 1}}} \right] - \left[ {{{\left( {{{\bar{m}}_1}} \right) }_{i,j + 2}}{p_{i,j + 2}} - {{\left( {{{\bar{m}}_1}} \right) }_{i,j - 2}}{p_{i,j - 2}}} \right] }}{{12 \cdot \Delta H}},\nonumber \\&\frac{{\partial \left( {{{\bar{m}}_2}p} \right) }}{{\partial \Gamma }} = \frac{{8\left[ {{{\left( {{{\bar{m}}_2}} \right) }_{i + 1,j}}{p_{i + 1,j}} - {{\left( {{{\bar{m}}_2}} \right) }_{i - 1,j}}{p_{i - 1,j}}} \right] - \left[ {{{\left( {{{\bar{m}}_2}} \right) }_{i + 2,j}}{p_{i + 2,j}} - {{\left( {{{\bar{m}}_2}} \right) }_{i - 2,j}}{p_{i - 2,j}}} \right] }}{{12 \cdot \Delta \Gamma }},\nonumber \\&\frac{{{\partial ^2}\left( {{{\bar{b}}_{11}}p} \right) }}{{\partial {H^2}}} = \frac{{16\left[ {{{\left( {{{\bar{b}}_{11}}} \right) }_{i,j + 1}}{p_{i,j + 1}} + {{\left( {{{\bar{b}}_{11}}} \right) }_{i,j - 1}}{p_{i,j - 1}}} \right] - \left[ {{{\left( {{{\bar{b}}_{11}}} \right) }_{i,j + 2}}{p_{i,j + 2}} + {{\left( {{{\bar{b}}_{11}}} \right) }_{i,j - 2}}{p_{i,j - 2}}} \right] - 30{{\left( {{{\bar{b}}_{11}}} \right) }_{i,j}}{p_{i,j}}}}{{12{{\left( {\Delta H} \right) }^2}}},\nonumber \\&\frac{{{\partial ^2}\left( {{{\bar{b}}_{22}}p} \right) }}{{\partial {\Gamma ^2}}} = \frac{{16\left[ {{{\left( {{{\bar{b}}_{22}}} \right) }_{i + 1,j}}{p_{i + 1,j}} + {{\left( {{{\bar{b}}_{22}}} \right) }_{i - 1,j}}{p_{i - 1,j}}} \right] - \left[ {{{\left( {{{\bar{b}}_{22}}} \right) }_{i + 2,j}}{p_{i + 2,j}} + {{\left( {{{\bar{b}}_{22}}} \right) }_{i - 2,j}}{p_{i - 2,j}}} \right] - 30{{\left( {{{\bar{b}}_{22}}} \right) }_{i,j}}{p_{i,j}}}}{{12{{\left( {\Delta \Gamma } \right) }^2}}}, \nonumber \\ \end{aligned}$$
(48)

where

$$\begin{aligned} {\left( {{{\bar{m}}_r}} \right) _{i,j}}= & {} {{\bar{m}}_r}\left( {j\Delta H,i\Delta \Gamma } \right) ,{\left( {{{\bar{b}}_{rs}}} \right) _{i,j}}\\&\quad = {{\bar{b}}_{rs}}\left( {j\Delta H,i\Delta \Gamma } \right) ,{p_{i,j}}\\&\quad = p\left( {j\Delta H,i\Delta \Gamma } \right) ,\quad r.s = 1,2; \\&\quad \quad i = 1,2, \ldots ,M;\quad j = 1,2, \ldots ,N. \end{aligned}$$

And \(\Delta H, \Delta \Gamma \) are discrete steps of variables H and \(\Gamma \), respectively. Boundary conditions are \({p_{M + 1,j}} = {p_{1,j}},{p_{0,j}} = {p_{M,j}},{p_{i,0}} = {p_{i,1}},{p_{i,N}} = 0\). Substituting Eq. 48 into Eq. 36 and letting \(\partial p/\partial t=0\), the stationary joint pdf \(p(H,\Gamma )\) can be obtained by means of finite difference method and successive over relaxation method [52, 53].

Appendix B

The implicit finite difference equations to Eqs. 39 and 47 are

$$\begin{aligned}&\frac{{R_{i,j}^{n + 1} - R_{i,j}^n}}{{\Delta t}} = {\left( {{\alpha _1}} \right) _{i,j}}\frac{{R_{i,j + 1}^{n + 1} - R_{i,j - 1}^{n + 1}}}{{2\Delta {H_0}}}\nonumber \\&\quad + {\left( {{\alpha _2}} \right) _{i,j}}\frac{{R_{i + 1,j}^{n + 1} - R_{i - 1,j}^{n + 1}}}{{2\Delta {\Gamma _0}}}\nonumber \\&\quad + \frac{1}{2}{\left( {{\beta _{11}}} \right) _{i,j}}\frac{{R_{i,j + 1}^{n + 1} - 2R_{i,j}^{n + 1} + R_{i,j - 1}^{n + 1}}}{{{{\left( {\Delta {H_0}} \right) }^2}}}\nonumber \\&\quad + \frac{1}{2}{\left( {{\beta _{22}}} \right) _{i,j}}\frac{{R_{i + 1,j}^{n + 1} - 2R_{i,j}^{n + 1} + R_{i - 1,j}^{n + 1}}}{{{{\left( {\Delta {\Gamma _0}} \right) }^2}}}, \end{aligned}$$
(49)
$$\begin{aligned}&- 1 = {\left( {{\alpha _1}} \right) _{i,j}}\frac{{{\mu _{i,j + 1}} - {\mu _{i,j - 1}}}}{{2\Delta {H_0}}} + {\left( {{\alpha _2}} \right) _{i,j}}\frac{{{\mu _{i + 1,j}} - {\mu _{i - 1,j}}}}{{2\Delta {\Gamma _0}}}\nonumber \\&\quad + \frac{1}{2}{\left( {{\beta _{11}}} \right) _{i,j}}\frac{{{\mu _{i,j + 1}} - 2{\mu _{i,j}} + {\mu _{i,j - 1}}}}{{{{\left( {\Delta {H_0}} \right) }^2}}}\nonumber \\&\quad + \frac{1}{2}{\left( {{\beta _{22}}} \right) _{i,j}}\frac{{{\mu _{i + 1,j}} - 2{\mu _{i,j}} + {\mu _{i - 1,j}}}}{{{{\left( {\Delta {\Gamma _0}} \right) }^2}}}, \end{aligned}$$
(50)

respectively, where

$$\begin{aligned} {\left( {{\alpha _r}} \right) _{i,j}}= & {} {\alpha _r}\left( {j\Delta {H_0},i\Delta {\Gamma _0}} \right) ,{\left( {{\beta _{rs}}} \right) _{i,j}} \\&= {\beta _{rs}}\left( {j\Delta {H_0},i\Delta {\Gamma _0}} \right) ,\\&R_{i,j}^n = R\left( {n\Delta t\mid j\Delta {H_0},i\Delta {\Gamma _0}} \right) ,{\mu _{i,j}} \\&= \mu \left( {j\Delta {H_0},i\Delta {\Gamma _0}} \right) ,\\&r.s = 1,2; \quad i = 1,2, \ldots ,M; \\&\quad j = 1,2, \ldots ,N; \quad n = 1,2, \ldots . \end{aligned}$$

\(\Delta t\) is the time step, \(\Delta H_0, \Delta \Gamma _0\) are discrete steps of variables \(H_0\) and \(\Gamma _0\), respectively. Boundary conditions for Eq. 49 are \(R_{M + 1,j}^{n + 1} = R_{1,j}^{n + 1},R_{0,j}^{n + 1} = R_{M,j}^{n + 1},R_{i,0}^{n + 1} = R_{i,1}^{n + 1},R_{i,N}^{n + 1} = 0\), and for Eq. 50 are \({\mu _{M + 1,j}} = {\mu _{1,j}},{\mu _{0,j}} = {\mu _{M,j}},{\mu _{i,0}} = {\mu _{i,1}},{\mu _{i,N}} = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Wei, W., Xu, W. et al. Stochastic response and reliability of electromagnetic energy harvester with mechanical impact and Coulomb friction. Nonlinear Dyn 109, 2263–2280 (2022). https://doi.org/10.1007/s11071-022-07596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07596-z

Keywords

Navigation