Skip to main content
Log in

First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations is studied. The motion equation of the system is reduced to a set of averaged Itô stochastic differential equations by stochastic averaging in the case of resonance. Then, the backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function and the conditional probability density and mean first-passage time are obtained by solving the backward Kolmogorov equation and Pontryagin equation with suitable initial and boundary conditions. The procedure is applied to Duffing–van der Pol system in resonant case and the analytical results are verified by Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bharucha-Reid A.T. (1960). Elements of Markov Processes and their Applications. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Cox D.R., Miller H.D. (1965). The Theory of Stochastic Processes. Clapman and Hall, New York

    MATH  Google Scholar 

  3. Bergman L.A., Spencer B.F. (1993). On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems. Nonlinear Dynam 4: 357–372

    Article  Google Scholar 

  4. Roberts J.B. (1986). First passage time for randomly excited non-linear oscillators. J Sound Vib 109(1): 33–50

    Article  Google Scholar 

  5. Sun J.Q., Hsu C.S. (1990). The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation. ASME J Appl Mech 57: 1018–1025

    Article  MathSciNet  Google Scholar 

  6. Labou M. (2003). Solution of the first-passage problem by advanced Monte Carlo simulation technique. Strength Mater 35(6): 588–593

    Article  Google Scholar 

  7. Bayer V., Bucher C. (1999). Important sampling for first passage problems of nonlinear structures. Probab Eng Mech 14(1): 27–32

    Article  Google Scholar 

  8. Pradlwarter H.J., Schuëller G.I. (1999). Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation. Probab Eng Mech 14(3): 213–227

    Article  Google Scholar 

  9. Koutsourelakis P.S., Pradlwarter H.J., Schuëller G.I. (2004). Reliability of structures in high dimensions, part I: algorithms and applications. Probab Eng Mech 19: 409–417

    Article  Google Scholar 

  10. Koutsourelakis P.S. (2004). Reliability of structures in high dimensions, part II: theoretical validation. Probab Eng Mech 9: 419–423

    Article  Google Scholar 

  11. Lin Y.K., Cai G.Q. (1995). Probabilistic Structural Dynamics, Advanced Theory and Applications. McGraw-Hill, New York

    Google Scholar 

  12. Roberts J.B. (1986). First-passage probabilities for randomly excited systems: diffusion methods. Probab Eng Mech 1: 66–81

    Article  Google Scholar 

  13. Cai G.Q., Lin Y.K. (1994). On statistics of first-passage failure. ASME J Appl Mech 61(1): 93–99

    MATH  MathSciNet  Google Scholar 

  14. Zhu W.Q. (2006). Nonlinear stochastic dynamics and control in Hamiltonian formulation. Appl Mech Rev 59: 230–248

    Article  Google Scholar 

  15. Gammaitoni L., Hanggi P., Jung P., Marchesoni F. (1998). Stochastic resonance. Rev Mod Phys 70(1): 223–287

    Article  Google Scholar 

  16. Srinivasan V., Soni A.H. (1982). Seismic analysis of rotating mechanical systems—a review. Shock Vib Digest 14: 13–19

    Article  Google Scholar 

  17. Spencer B.F., Tang J., Hilal C.G. (1990). Reliability of non-linear oscillators subjected to combined periodic and random loading. J Sound Vib 140(1): 163–169

    Article  Google Scholar 

  18. Namachchivaya N.S. (1991). Almost sure stability of dynamical systems under combined harmonic and stochastic excitations. J Sound Vib 151: 77–91

    Article  Google Scholar 

  19. Ariaratnam S.T., Tam D.S.F. (1976). Parametric random excitation of a damped Mathiu oscillator. Z Angew Math Mech 56: 449–452

    Article  Google Scholar 

  20. Dimentberg M.F. (1988). Statistical dynamics of nonlinear and time-varying systems. Wiley, New York

    MATH  Google Scholar 

  21. Cai G.Q., Lin Y.K. (1994). Nonlinear damped systems under simultaneous harmonic and random excitations. Nonlinear Dynam 6: 163–177

    Article  Google Scholar 

  22. Huang Z.L., Zhu W.Q. (1997). Exact stationary solutions of averaged equations of stochastically and harmonically excited MDOF quasi-linear systems with internal and (or) external resonances. J Sound Vib 204: 563–576

    Article  MathSciNet  Google Scholar 

  23. Benedettini F., Zulli D., Vasta M. (2006). Nonlinear response of SDOF systems under combined deterministic and random excitations. Nonlinear Dynam 46: 375–385

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang Z.L., Zhu W.Q., Suzuki Y. (2000). Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white-noise excitations. J Sound Vib 238: 233–256

    Article  MathSciNet  Google Scholar 

  25. Rong H.W., Meng G., Wang X.D., Xu W., Fang T. (2004). Response statistic of strongly non-linear oscillator to combined deterministic and random excitation. Int J Non-Linear Mech 39(6): 871–878

    Article  MATH  Google Scholar 

  26. Xu W., He Q., Fang T., Rong H.W. (2005). Global analysis of crisis in Twin-Well Duffing system under harmonic excitation in presence of noise. Chaos Soliton Fract 23(1): 141–150

    Article  MATH  Google Scholar 

  27. Xu W., He Q., Fang T., Rong H.W. (2004). Stochastic bifurcation in Duffng system subject to harmonic excitation and in presence of random noise. Int J Non-Linear Mech 39(9): 1473–1479

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu W.Q., Wu Y.J. (2003). First-passage time of Duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dynam 32: 291–305

    Article  MATH  Google Scholar 

  29. Zhu W.Q., Wu Y.J. (2004). Optimal bounded control of first-passage failure of strongly non-linear oscillator under combined harmonic and white-noise excitations. J Sound Vib 271: 83–101

    Article  MathSciNet  Google Scholar 

  30. Xu Z., Cheung Y.K. (1994). Averaging method using generalized harmonic functions for strongly non-linear oscillators. J Sound Vib 174: 563–576

    Article  MATH  MathSciNet  Google Scholar 

  31. Stratonovich R.L. (1963). Topics in the theory of random noise, Vol. 1. Gordom and Breach, New York

    Google Scholar 

  32. Khasminskii R.Z. (1966). A limit theorem for solution of differential equations with random right hand sides. Theor Probab Appl 11: 390–405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Q. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y.J., Luo, M. & Zhu, W.Q. First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations. Arch Appl Mech 78, 501–515 (2008). https://doi.org/10.1007/s00419-007-0174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0174-5

Keywords

Navigation