Skip to main content

Advertisement

Log in

Micro-amplitude vibration suppression of a bistable nonlinear energy sink constructed by a buckling beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Effective reduction of micro-amplitude vibration has always been a serious challenge. The nonlinear energy sink (NES) has been proven to be able to reduce vibration at a wide frequency. However, the energy threshold of the NES prevents it from suppressing micro-vibrations. In this paper, a bistable nonlinear energy sink (BNES) based on a buckling beam oscillator is constructed. The threshold of the NES is lowered by the nonlinear dynamic behavior of jumping between wells of the bistable oscillator. The motion equations of the discrete–continuous system are derived by using Hamilton's principle. The approximate analytical solution is obtained and verified numerically. The results show that even when the primary system has a micro-amplitude resonance, the nonlinear cross-well vibration of the BNES can still reduce the vibration. The robustness of the BNES is stronger than that of the tuned mass damper (TMD). The optimal parameters of the BNES are obtained with particle swarm optimization (PSO) algorithm. The result of parameter optimization shows that the energy threshold of the nonlinear energy sink can be effectively lowered. In short, the method based on nonlinear dynamics in this paper provides an effective reduction strategy for micro-vibration in engineering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [H. Ding], upon reasonable request.

References

  1. Liu, C., Jing, X., Daley, S., Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015). https://doi.org/10.1016/j.ymssp.2014.10.007

    Article  Google Scholar 

  2. Angeletti, F., Gasbarri, P., Sabatini, M.: Optimal design and robust analysis of a net of active devices for micro-vibration control of an on-orbit large space antenna. Acta Astronaut. 164, 241–253 (2019). https://doi.org/10.1016/j.actaastro.2019.07.028

    Article  Google Scholar 

  3. Wang, X., Wu, H., Yang, B.: Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform. Mech. Syst. Signal Process. 139, 106606 (2020). https://doi.org/10.1016/j.ymssp.2019.106606

    Article  Google Scholar 

  4. Li, L., Wang, L., Yuan, L., Zheng, R., Wu, Y., Sui, J., Zhong, J.: Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronaut. 180, 417–428 (2021). https://doi.org/10.1016/j.actaastro.2020.12.054

    Article  Google Scholar 

  5. Wang, G.-X., Ding, H., Chen, L.-Q.: Performance evaluation and design criterion of a nonlinear energy sink. Mech. Syst. Signal Pr. 169, 108770 (2022). https://doi.org/10.21203/rs.3.rs-323590/v1

    Article  Google Scholar 

  6. Zhang, Z., Ding, H., Zhang, Y.-W., Chen, L.-Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta. Mech. Sin. 37, 387–401 (2021). https://doi.org/10.1007/s10409-021-01062-6

    Article  MathSciNet  Google Scholar 

  7. Chang, Y., Zhou, J., Wang, K., Xu, D.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. (2021). https://doi.org/10.1016/j.jsv.2020.115859

    Article  Google Scholar 

  8. Ji, J.C.: Design of a nonlinear vibration absorber using three-to-one internal resonances. Mech. Syst. Signal Process. 42, 236–246 (2014). https://doi.org/10.1016/j.ymssp.2013.06.019

    Article  Google Scholar 

  9. Ji, J.C., Zhang, N.: Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber. J. Sound Vib. 329, 2044–2056 (2010). https://doi.org/10.1016/j.jsv.2009.12.020

    Article  Google Scholar 

  10. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. Trans. ASME 123, 324–332 (2001). https://doi.org/10.1115/1.1368883

    Article  Google Scholar 

  11. Dekemele, K., Van Torre, P., Loccufier, M.: Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. J. Sound Vib. 473, 115243 (2020). https://doi.org/10.1016/j.jsv.2020.115243

    Article  Google Scholar 

  12. Das, S., Tesfamariam, S., Chen, Y., Qian, Z., Tan, P., Zhou, F.: Reliability-based optimization of nonlinear energy sink with negative stiffness and sliding friction. J. Sound Vib. 485, 115560 (2020). https://doi.org/10.1016/j.jsv.2020.115560

    Article  Google Scholar 

  13. Ding, H., Chen, L.-Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  14. Chen, H.-Y., Mao, X.-Y., Ding, H., Chen, L.-Q.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Signal Process. 135, 106383 (2020). https://doi.org/10.1016/j.ymssp.2019.106383

    Article  Google Scholar 

  15. Geng, X.F., Ding, H.: Two-modal resonance control with an encapsulated nonlinear energy sink. J Sound Vib. (2022). https://doi.org/10.1016/j.jsv.2021.116667

    Article  Google Scholar 

  16. Wang, G.X., Ding, H.: Mass design of nonlinear energy sinks. Eng. Struct. (2022). https://doi.org/10.1016/j.engstruct.2021.113438

    Article  Google Scholar 

  17. Yao, H., Wang, Y., Cao, Y., Wen, B.: Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 118, 103273 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103273

    Article  Google Scholar 

  18. Khazaee, M., Khadem, S.E., Moslemi, A., Abdollahi, A.: Vibration mitigation of a pipe conveying fluid with a passive geometrically nonlinear absorber: A tuning optimal design. Commun. Nonlinear Sci. Numer. Simul. 91, 105439 (2020). https://doi.org/10.1016/j.cnsns.2020.105439

    Article  MathSciNet  MATH  Google Scholar 

  19. Khazaee, M., Khadem, S.E., Moslemi, A., Abdollahi, A.: A comparative study on optimization of multiple essentially nonlinear isolators attached to a pipe conveying fluid. Mech. Syst. Signal Process. 141, 106442 (2020). https://doi.org/10.1016/j.ymssp.2019.106442

    Article  Google Scholar 

  20. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015). https://doi.org/10.1016/j.jsv.2015.06.025

    Article  Google Scholar 

  21. Bab, S., Khadem, S.E., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech. Syst. Signal Process. 84, 128–157 (2017). https://doi.org/10.1016/j.ymssp.2016.07.002

    Article  Google Scholar 

  22. Zang, J., Cao, R.-Q., Zhang, Y.-W., Fang, B., Chen, L.-Q.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 95, 105620 (2021). https://doi.org/10.1016/j.cnsns.2020.105620

    Article  MathSciNet  MATH  Google Scholar 

  23. Romeo, F., Manevitch, L.I., Bergman, L.A., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos 25, 053109 (2015). https://doi.org/10.1063/1.4921193

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92, 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  25. Dekemele, K., Van Torre, P., Loccufier, M.: Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dyn. 98, 1831–1851 (2019). https://doi.org/10.1007/s11071-019-05291-0

    Article  Google Scholar 

  26. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: Modeling and experiment verification. Appl. Energy 133, 33–39 (2014). https://doi.org/10.1016/j.apenergy.2014.07.077

    Article  Google Scholar 

  27. Emam, S.A., Inman, D.J.: A review on Bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67, 060803 (2015)

    Article  Google Scholar 

  28. Wang, H., Tang, L.: Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal Process. 86, 29–39 (2017). https://doi.org/10.1016/j.ymssp.2016.10.001

    Article  Google Scholar 

  29. Wu, Z., Xu, Q.: Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mech. Syst. Signal Process. 162, 108043 (2022). https://doi.org/10.1016/j.ymssp.2021.108043

    Article  Google Scholar 

  30. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009). https://doi.org/10.1103/PhysRevLett.102.080601

    Article  Google Scholar 

  31. Zhou, S., Cao, J., Erturk, A., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4803445

    Article  Google Scholar 

  32. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of alinear oscillator coupled to a bistable light attachment: Numerical study. J. Comput. Nonlinear Dyn. 10, 011007 (2015). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  34. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87, 2677–2695 (2016). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

  35. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  36. Chen, Y.-Y., Qian, Z.-C., Zhao, W., Chang, C.-M.: A magnetic Bi-stable nonlinear energy sink for structural seismic control. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2020.115233

    Article  Google Scholar 

  37. Xia, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1285–1296 (2020). https://doi.org/10.1007/s11071-020-06008-4

    Article  Google Scholar 

  38. Wang, J., Zhang, C., Li, H., Liu, Z.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. (2021). https://doi.org/10.1016/j.engstruct.2021.112184

    Article  Google Scholar 

  39. Li, H., Li, A., Kong, X.: Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn. 103, 1475–1497 (2021). https://doi.org/10.1007/s11071-020-06178-1

    Article  Google Scholar 

  40. Masana, R., Daqaq, M.F.: Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Phys. 111, 044501 (2012). https://doi.org/10.1063/1.3684579

    Article  Google Scholar 

  41. Jiang, W.-A., Chen, L.-Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85, 2507–2520 (2016). https://doi.org/10.1007/s11071-016-2841-y

    Article  Google Scholar 

  42. Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21, 035021 (2012). https://doi.org/10.1088/0964-1726/21/3/035021

    Article  Google Scholar 

  43. Qian, F., Zhou, S., Zuo, L.: Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2019.104984

    Article  MathSciNet  MATH  Google Scholar 

  44. Chiacchiari, S., Romeo, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment. Int. J. Non-Linear Mech. 94, 84–97 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.007

    Article  Google Scholar 

  45. Chiacchiari, S., Romeo, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment—experimental study. Mech. Syst. Signal Process. 125, 185–201 (2019). https://doi.org/10.1016/j.ymssp.2018.06.058

    Article  Google Scholar 

  46. Bab, S., Khadem, S.E., Shahgholi, M.: Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink. Meccanica 50, 2441–2460 (2015). https://doi.org/10.1007/s11012-015-0156-6

    Article  MathSciNet  Google Scholar 

  47. Wang, J., Wierschem, N.E., Wang, B., Spencer, B.F.: Multi-objective design and performance investigation of a high-rise building with track nonlinear energy sinks. Struct. Design Tall Spec. Build. 29, e1692 (2019). https://doi.org/10.1002/tal.1692

    Article  Google Scholar 

  48. Ma, X., Wong, P.K., Zhao, J.: Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper. Mech. Syst. Signal Process. 117, 667–688 (2019). https://doi.org/10.1016/j.ymssp.2018.08.022

    Article  Google Scholar 

  49. Li, Z., Zheng, L., Ren, Y., Li, Y., Xiong, Z.: Multi-objective optimization of active suspension system in electric vehicle with In-Wheel-Motor against the negative electromechanical coupling effects. Mech. Syst. Signal Process. 116, 545–565 (2019). https://doi.org/10.1016/j.ymssp.2018.07.001

    Article  Google Scholar 

  50. Barraza, M., Bojorquez, E., Fernandez-Gonzalez, E., Reyes-Salazar, A.: Multi-objective optimization of structural steel buildings under earthquake loads using NSGA-II and PSO. KSCE J. Civ. Eng. 21, 488–500 (2017). https://doi.org/10.1007/s12205-017-1488-7

    Article  Google Scholar 

  51. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2015). https://doi.org/10.1007/s11071-015-2304-x

    Article  MathSciNet  Google Scholar 

  52. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Design and performance analysis of a nonlinear energy sink attached to a beam with different support conditions. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 230, 527–542 (2015). https://doi.org/10.1177/0954406215578705

    Article  Google Scholar 

  53. Geng, X., Ding, H., Mao, X., Chen, L.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 156, 107625 (2021). https://doi.org/10.1016/j.ymssp.2021.107625

    Article  Google Scholar 

  54. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312, 234–256 (2008). https://doi.org/10.1016/j.jsv.2007.10.035

    Article  Google Scholar 

  55. Ahmadabadi, Z.N., Khadem, S.E.: Annihilation of high-amplitude periodic responses of a forced two degrees-of-freedom oscillatory system using nonlinear energy sink. J. Vib. Control 19, 2401–2412 (2012). https://doi.org/10.1177/1077546312456226

    Article  MathSciNet  Google Scholar 

  56. Mamaghani, A.E., Khadem, S.E., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86, 1761–1795 (2016). https://doi.org/10.1007/s11071-016-2992-x

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Science Fund for Distinguished Young Scholars (No. 12025204) and the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Derivation of differential equations of motion

Appendix A. Derivation of differential equations of motion

According to the generalized Hamilton’s principle, the governing equation of the coupling system can be written as

$$ \delta \int_{{t_{1} }}^{{t_{2} }} {\left( {T - V} \right)} {\text{d}}t + \delta \int_{{t_{1} }}^{{t_{2} }} {W_{{\text{F}}} } {\text{d}}t = 0 $$
(A.1)

where \(\delta\) is the variation taken within the specified time interval.

The kinetic energy and the potential energy of the LO can be expressed as

$$ T_{1} = \frac{1}{2}m_{1} \dot{x}^{2} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} V_{1} = \frac{1}{2}k_{1} (x - x_{0} )^{2} $$
(A.2)

where m1 and k1 are mass and stiffness of LO, respectively.

The kinetic energy of m2 can be expressed as

$$ T_{2} = \frac{1}{2}m_{2} \left[ {\frac{{\partial \overline{w}(L/2)}}{\partial t}} \right]^{2} $$
(A.3)

where m2 is the concentrated mass fixed at the midpoint of the beam.

The kinetic energy of the beam can be expressed as

$$ T_{{\text{b}}} = \frac{1}{2}\int_{0}^{L} {\rho S\left[ {\left( {\frac{\partial u}{{\partial t}}} \right)^{2} + \left( {\frac{{\partial \overline{w}}}{\partial t}} \right)^{2} } \right]} {\text{d}}y $$
(A.4)

where L is the initial length of the beam, \(\rho\) is mass per unit volume, and S is the cross-sectional area of the beam.

The bending potential energy of the beam is expressed as

$$ V_{{{\text{b1}}}} = \frac{1}{2}\int_{0}^{L} {EI\left[ {\frac{{\partial^{2} (\overline{w} - x)}}{{\partial y^{2} }}} \right]}^{2} {\text{d}}y $$
(A.5)

where E and I are the modulus of elasticity and the moment of inertia of the beam, respectively.

The axial tensile potential energy is denoted as

$$ V_{{{\text{b2}}}} = \frac{1}{2}\int_{0}^{L} {P\left[ {\frac{\partial u}{{\partial y}} + \frac{{\partial (\overline{w} - x)}}{\partial y}} \right]}^{2} {\text{d}}y $$
(A.6)

The potential energy generated by the stretching of the neutral surface can be expressed as

$$ V_{{{\text{b3}}}} = \frac{1}{2}\int_{0}^{L} {ES\left[ {\frac{\partial u}{{\partial y}} + \frac{1}{2}\left( {\frac{{\partial (\overline{w} - x)}}{\partial y}} \right)^{2} } \right]}^{2} {\text{d}}y $$
(A.7)

The total kinetic energy and total potential energy of the system, respectively, are

$$ T = T_{1} + T_{2} + T_{{\text{b}}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} V = V_{1} + V_{{{\text{b1}}}} + V_{{{\text{b2}}}} + V_{{{\text{b3}}}} $$
(A.8)

The work done by the external force can be written as

$$ W_{{\text{C}}} = c_{1} \left( {\dot{x} - \dot{x}_{0} } \right)\left( {x - x_{0} } \right) + \mu \int_{0}^{L} {\left( {\overline{w} - x} \right)} \left( {\dot{\overline{w}} - \dot{x}} \right){\text{ d}}y $$
(A.9)

where c1 is the damping coefficient of the LO; \(\mu\) is the viscous damping coefficient.

Substituting Eqs. (A.2)–(A.9) into Eq. (A.1), the governing equations of the beam can be obtained by using the variation principle as

$$ m_{1} \ddot{x} + c_{1} \left( {\dot{x} - \dot{x}_{0} } \right) + k_{1} \left( {x - x_{0} } \right){ + }\left[ {m_{2} \delta \left( {y - L/2} \right){ + }\rho S} \right]\frac{{\partial^{2} \left( {w{ + }x} \right)}}{{\partial t^{2} }} = 0 $$
(A.10)
$$ \begin{gathered} \left[ {m_{2} \delta \left( {y - \frac{L}{2}} \right){ + }\rho S} \right]\frac{{\partial^{2} \left( {w{ + }x} \right)}}{{\partial t^{2} }} + EI\frac{{\partial^{4} w}}{{\partial y^{4} }}{ + }P\frac{{\partial^{2} w}}{{\partial y^{2} }} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - ES\left[ {\frac{3}{2}\left( {\frac{\partial w}{{\partial y}}} \right)^{2} \frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{{\partial^{2} u}}{{\partial y^{2} }}\frac{\partial w}{{\partial y}} + \frac{\partial u}{{\partial y}}\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right] + \mu \frac{\partial w}{{\partial t}} = 0 \hfill \\ \end{gathered} $$
(A.11)
$$ \rho S\frac{{\partial^{2} u}}{{\partial t^{2} }} - ES\left( {\frac{{\partial^{2} u}}{{\partial y^{2} }} + \frac{\partial w}{{\partial y}}\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) = 0 $$
(A.12)

where w is also the relative displacement, which is the transverse vibration displacement of the beam and is defined as \(\overline{w} - x\). \(\delta\) is the Dirac function.

Because the longitudinal displacement is much smaller than the transverse displacement and ρS <  < ES, Eq. (A.12) can be written as

$$ \frac{{\partial^{2} u}}{{\partial y^{2} }} + \frac{\partial w}{{\partial y}}\frac{{\partial^{2} w}}{{\partial y^{2} }}{ = }0 $$
(A.13)

The solution to Eq. (A.13) is obtained

$$ u = - \frac{1}{2}\int_{0}^{y} {\left( {\frac{\partial w}{{\partial y}}} \right)}^{2} {\text{d}}y + yC_{1} \left( t \right) + C_{2} \left( t \right) $$
(A.14)

where C1(t) and C2(t) are the functions of time t.

The longitudinal boundary condition of the beam is fixed at both ends.

$$ u\left( {0,t} \right) = 0,u\left( {L,t} \right) = 0 $$
(A.15)

Substituting Eq. (A.15) into Eq. (A.14) yields

$$ u = \frac{y}{2L}\int_{0}^{L} {\left( {\frac{\partial w}{{\partial y}}} \right)}^{2} {\text{d}}y - \frac{1}{2}\int_{0}^{y} {\left( {\frac{\partial w}{{\partial y}}} \right)}^{2} {\text{d}}y $$
(A.16)

Substituting Eq. (A.16) into Eq. (A.11), the coupling nonlinear equation of the discrete–continuous system is as follows.

$$ m_{1} \ddot{x} + c_{1} \left( {\dot{x} - \dot{x}_{0} } \right) + k_{1} \left( {x - x_{0} } \right){ + }\left[ {m_{2} \delta \left( {y - L/2} \right)} \right]\frac{{\partial^{2} \left( {w{ + }x} \right)}}{{\partial t^{2} }} = 0 $$
(A.17)
$$ \left[ {m_{2} \delta \left( {y - \frac{L}{2}} \right){ + }\rho S} \right]\frac{{\partial^{2} \left( {w{ + }x} \right)}}{{\partial t^{2} }} + EI\frac{{\partial^{4} w}}{{\partial y^{4} }}{ + }\left[ {P - \frac{ES}{{2L}}\int_{0}^{L} {\left( {\frac{\partial w}{{\partial y}}} \right)^{2} {\text{d}}y} } \right]\frac{{\partial^{2} w}}{{\partial y^{2} }} + \mu \frac{\partial w}{{\partial t}} = 0 $$
(A.18)

Ignore the time term of Eq. (A.18), and the static governing equations of the beam are obtained as follows.

$$ EI\frac{{\partial^{4} w}}{{\partial y^{4} }} + \left[ {P - \frac{ES}{{2L}}\int_{0}^{L} {\left( {\frac{\partial w}{{\partial y}}} \right)^{2} {\text{d}}y} } \right]\frac{{\partial^{2} w}}{{\partial y^{2} }} = 0 $$
(A.19)

The transverse boundary conditions of the beam are fixed at both ends.

$$ w\left( {0,t} \right) = 0, \, \frac{{\partial w\left( {0,t} \right)}}{\partial y} = 0, \, w\left( {L,t} \right) = 0, \, \frac{{\partial w\left( {L,t} \right)}}{\partial y} = 0 $$
(A.20)

An equilibrium configuration \(w_{{\text{p}}}\) of post-buckling is obtained as

$$ w_{{\text{p}}} { = }d_{0} \phi \left( y \right) $$
(A.21)

where \(\phi \left( y \right){ = }\frac{1}{2}\left[ {1 - \cos \left( {\frac{2\pi y}{L}} \right)} \right],{\kern 1pt} {\kern 1pt} {\kern 1pt} d_{0} { = }\frac{2}{E\pi S}\sqrt {ES\left( {PL^{2} - 4EI\pi^{2} } \right)}\), \(\phi \left( y \right)\) is the first buckling mode shape, and d0 is the midpoint deflection.

In order to study the dynamic problem around the buckling configuration, the total deflection can be defined as the sum of the post-buckling static deflection and the time-dependent displacement r(x,t) around the initial equilibrium configuration [43],

$$ w\left( {y,t} \right) = d_{0} \phi \left( y \right) + r\left( {y,t} \right) $$
(A.22)

According to Galerkin's truncation method, r(y,t) can be expanded into a superposition of N orthonormal base functions \(\phi_{g} \left( y \right)\) as follows.

$$ r\left( {y,t} \right){ = }\sum\nolimits_{{{\text{g}} = 1}}^{N} {z_{{\text{g}}} \left( t \right)\phi_{{\text{g}}} \left( y \right)} $$
(A.23)

where \(z_{{\text{g}}} \left( t \right)\) are the generalized coordinates. If only the first mode is preserved, and \(\phi_{1} \left( y \right){ = }\phi \left( y \right)\), then the total deflection becomes

$$ w\left( {y,t} \right) = d_{0} \phi \left( y \right){ + }z_{1} \left( t \right)\phi_{1} \left( y \right){ = }q\left( t \right)\phi \left( y \right) $$
(A.24)

where \(q\left( t \right) = d_{0} + z_{1} \left( t \right)\) represents the time-dependent displacement of the fixed–fixed beam relative to the axis passing through the supports. Substitute Eq. (A.24) into Eq. (A.18), and then multiply by \(\phi \left( y \right)\) and integrate over the length of the beam. It should be stated that the formula derivation of the mechanical model in this paper mainly refers to reference [43].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Yc., Ding, H., Du, RH. et al. Micro-amplitude vibration suppression of a bistable nonlinear energy sink constructed by a buckling beam. Nonlinear Dyn 108, 3185–3207 (2022). https://doi.org/10.1007/s11071-022-07378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07378-7

Keywords

Navigation