Skip to main content
Log in

Modeling and analyzing of nonlinear dynamics for linear guide slide platform considering assembly error

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is industry tendency to accurately predict the dynamics of the mechanical systems with full consideration of errors. Based on the Hertz contact theory and general bearing modeling methods, this study proposed a more practical model using numerical method to investigate the influence of assembly error on the dynamics of linear guide slide platform. First, the modeling methods of five types of assembly errors are established, based on which, a nonlinear dynamic model is developed to investigate the influence of assembly error. In consideration of assembly error, the modeling method enables the sum of restoring forces and restoring moments equal to zero when no external load applied to the platform. Second, the simulation results indicate that the assembly error can cause uneven load distribution, change the dynamics of the system. In addition, different from previous research results, the stability of the system cannot be improved by simply increasing the preload. Last, in order to validate the proposed method, the proposed model is compared with previous fewer degrees-of-freedom model, and a series of experiments are conducted on a specialized platform to estimate the parameters of the system and verify the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

\(\Delta\delta_{\rm{x}}^\varepsilon \), \(\Delta\delta_{\rm{y}}^\varepsilon \) :

Straightness assembly errors of rail II in x and y directions

\(\Delta \varepsilon_{x} ,\Delta \varepsilon_{y} ,\Delta \varepsilon_{z}\) :

Rotation assembly errors of rail II about x, y and z axis

\(\Delta{\rm{x}}_{\rm{ijk}}^{\rm{a}}\), \(\Delta{\rm{y}}_{\rm{ijk}}^{\rm{a}}\) :

Type a assembly error induced contact deformation along x and y axis

\(\Delta{\rm{x}}_{\rm{ijk}}^{\rm{b}}\), \(\Delta{\rm{y}}_{\rm{ijk}}^{\rm{b}}\) :

Type b assembly error induced contact deformation along x and y axis

\(\Delta{\rm{x}}_{\rm{ijk}}^{\rm{c}}\), \(\Delta{\rm{y}}_{\rm{ijk}}^{\rm{c}}\) :

Type c assembly error induced contact deformation along x and y axis

\(\Delta{\rm{x}}_{\rm{ijk}}^{\rm{d}}\), \(\Delta{\rm{y}}_{\rm{ijk}}^{\rm{d}}\) :

Type d assembly error induced contact deformation along x and y axis

\(\Delta{\rm{x}}_{\rm{ijk}}^{\rm{e}}\), \(\Delta{\rm{y}}_{\rm{ijk}}^{\rm{e}}\) :

Type e assembly error induced contact deformation along x and y axis

l k :

Distance between the kth and the first loaded ball in the grooves of each carriage

\({\rm{S}}_{0}^\varepsilon \) :

Initial distance between the groove curvature centers with consideration of assembly error

r cg, r rg :

The groove radius of carriage and rail

\(\alpha_{0}^{\varepsilon }\) :

The initial contact angle with consideration of assembly error

δ ijk :

The contact deformation of the kth ball in the jth groove of the ith carriage

Q ijk :

The contact force of the kth ball in the jth groove of the ith carriage

α ijk :

The contact angle of the kth ball in the jth groove of the ith carriage

\(\Delta x_{ijk}\) , \(\Delta y_{ijk}\) :

The contact deformation of the kth ball along x and y directions under external load

x, y :

The displacement of the platform along x and y axis under external load

L x , L y :

The distance between grooves along x and y directions

l x , l y :

The distance between carriages along x and y directions

φ x , φ y , φ z :

The angular displacement about x, y and z axis

F x , F y :

Total restoring force of platform along x, and y axis

M x , M y , M z :

Total restoring moment of platform about x, y and z axis

I x , I y , I z :

Moment of inertia of platform about x, y and z axis

\({\rm{w}}_{x}\) \({\rm{w}}_{y}\) \({\rm{w}}_{z}\) :

Width, length, and height of platform

i :

ith rail

j :

jth carriage

k :

kth ball

x :

x Axis

y :

y Axis

z :

z Axis

a :

Type a assembly error

b :

Type b assembly error

c :

Type c assembly error

d :

Type d assembly error

e :

Type e assembly error

References

  1. Y. Altintas, A. Verl, C. Brecher, L. Uriarte, G. Pritschow, Erratum to “Machine tool feed drives” [CIRP Ann. Manuf. Technol. 60 (2011) 779–796], CIRP Annals, 61 (2012) 837

  2. Ohta, H., Hayashi, E.: Vibration of linear guideway type recirculating linear ball bearings. J. Sound Vib. 235, 847–861 (2000)

    Article  Google Scholar 

  3. Fujita, T., Matsubara, A., Yamazaki, K.: Experimental characterization of disturbance force in a linear drive system with high-precision rolling guideways. Int. J. Mach. Tools Manuf 51, 104–111 (2011)

    Article  Google Scholar 

  4. Ramesh, R., Mannan, M.A., Poo, A.N.: Error compensation in machine tools — a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int. J. Mach. Tools Manuf 40, 1235–1256 (2000)

    Article  Google Scholar 

  5. Ramesh, R., Mannan, M.A., Poo, A.N.: Error compensation in machine tools — a review: part II: thermal errors. Int. J. Mach. Tools Manuf 40, 1257–1284 (2000)

    Article  Google Scholar 

  6. Xu, M., Li, C., Sun, Y., Yang, T., Zhang, H., Liu, Z., Liu, H., Li, Z., Zhang, Y.: Model and nonlinear dynamic analysis of linear guideway subjected to external periodic excitation in five directions. Nonlinear Dyn. 105, 3061–3092 (2021)

    Article  Google Scholar 

  7. Kong, X., Sun, W., Wang, B., Wen, B.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 346, 265–283 (2015)

    Article  Google Scholar 

  8. Wu, J.S.-S., Chang, J.-C., Tsai, G.-A., Lin, C.-Y., Ou, F.-M.: The effect of bending loads on the dynamic behaviors of a rolling guide. J. Mech. Sci. Technol. 26, 671–680 (2012)

    Article  Google Scholar 

  9. Ohta, H., Tsuruoka, T., Fujinami, Y., Kato, S.: Effects of grease characteristics on sound and vibration of a linear-guideway type recirculating ball bearing. J. Tribol. 138, 81 (2015)

    Google Scholar 

  10. Liu, Z., Xu, M., Zhang, H., Miao, H., Li, Z., Li, C., Zhang, Y.: Nonlinear dynamic analysis of ball screw feed system considering assembly error under harmonic excitation. Mech. Syst. Signal Process. 157, 107717 (2021)

    Article  Google Scholar 

  11. Wang, Z., Li, C., Xu, M., Zhang, Y.: Dynamic analysis and stability prediction of nonlinear feed system coupled with flexible workpiece. J. Sound Vibr. 520, 116597 (2022)

    Article  Google Scholar 

  12. Jiang, S., Wang, Y., Wang, Y.: Modeling of static stiffness for linear motion roller guide. J. Tribol. 141, 49 (2019)

    Article  Google Scholar 

  13. Xu, M., Li, C., Zhang, H., Liu, Z., Zhang, Y.: A comprehensive nonlinear dynamic model for ball screw feed system with rolling joint characteristics. Nonlinear Dyn. 106, 169–210 (2021)

    Article  Google Scholar 

  14. Soleimanian, P., Mohammadpour, M., Ahmadian, H.: Coupled tribo-dynamic modelling of linear guideways for high precision machining application. Proc. Instit. Mech. Eng. Part J. Eng. Tribol. 235, 711–737 (2021)

    Article  Google Scholar 

  15. Pawełko, P., Berczyński, S., Grządziel, Z.: Modeling roller guides with preload. Arch. Civil Mech. Eng. 14, 691–699 (2014)

    Article  Google Scholar 

  16. Yang, L., Wang, L., Zhao, W.: Hybrid modeling and analysis of multidirectional variable stiffness of the linear rolling guideway under combined loads. Proc. Instit Mech. Eng. Part C-J. Mech. Eng. Sci. 234, 2716–2727 (2020)

    Article  Google Scholar 

  17. Sakai, Y., Tanaka, T.: Influence of lubricant on nonlinear vibration characteristics of linear rolling guideway. Tribol. Int. 144, 106124 (2020)

    Article  Google Scholar 

  18. Li, C., Xu, M., He, G., Zhang, H., Liu, Z., He, D., Zhang, Y.: Time-dependent nonlinear dynamic model for linear guideway with crowning. Tribol. Int. 151, 106413 (2020)

    Article  Google Scholar 

  19. Wang, W., Li, C., Zhou, Y., Wang, H., Zhang, Y.: Nonlinear dynamic analysis for machine tool table system mounted on linear guides. Nonlinear Dyn. 94, 2033–2045 (2018)

    Article  Google Scholar 

  20. Wang, W., Shen, G., Zhang, Y., Zhu, Z., Li, C., Lu, H.: Dynamic reliability analysis of mechanical system with wear and vibration failure modes. Mech. Mach. Theory 163, 104385 (2021)

    Article  Google Scholar 

  21. Ohta, H., Tanaka, K.: Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. J. Tribol. 132, 63 (2009)

    Google Scholar 

  22. Hung, J.-P., Lai, Y.-L., Lin, C.-Y., Lo, T.-L.: Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide. Int. J. Mach. Tools Manuf 51, 731–739 (2011)

    Article  Google Scholar 

  23. Ohta, H., Kato, S., Matsumoto, J., Nakano, K.: A design of crowning to reduce ball passage vibrations of a linear guideway type recirculating linear ball bearing. J. Tribol. 127, 257–262 (2005)

    Article  Google Scholar 

  24. Kwon, S.-W., Tong, V.-C., Hong, S.-W.: Five-degrees-of-freedom model for static analysis of linear roller bearing subjected to external loading. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233, 2920–2938 (2018)

    Article  Google Scholar 

  25. Sun, W., Kong, X., Wang, B., Li, X.: Statics modeling and analysis of linear rolling guideway considering rolling balls contact. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 229, 168–179 (2014)

    Article  Google Scholar 

  26. Yuan Lin, C., Pin Hung, J., Liang Lo, T.: Effect of preload of linear guides on dynamic characteristics of a vertical column–spindle system. Int. J. Mach. Tools Manuf. 50, 741–746 (2010)

    Article  Google Scholar 

  27. Zou, H.T., Wang, B.L.: Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation. Tribol. Int. 92, 472–484 (2015)

    Article  Google Scholar 

  28. Ohta, H.: Sound of linear guideway type recirculating linear ball bearings. J. Tribol. 121, 678–685 (1999)

    Article  Google Scholar 

  29. Tao, W., Zhong, Y., Feng, H., Wang, Y.: Model for wear prediction of roller linear guides. Wear 305, 260–266 (2013)

    Article  Google Scholar 

  30. Liu, C., Zhao, C., Wen, B.: Investigation on coupled vibration of machine tool table system with position deviations. Int. J. Adv. Manuf. Technol. 114, 2321–2337 (2021)

    Article  Google Scholar 

  31. Majda, P.: Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis. Eng. 36, 369–378 (2012)

    Article  Google Scholar 

  32. Ma, J., Lu, D., Zhao, W.: Assembly errors analysis of linear axis of CNC machine tool considering component deformation. Int. J. Adv. Manuf. Technol. 86, 281–289 (2016)

    Article  Google Scholar 

  33. Sun, G., He, G., Zhang, D., Sang, Y., Zhang, X., Ding, B.: Effects of geometrical errors of guideways on the repeatability of positioning of linear axes of machine tools. Int. J. Adv. Manuf. Technol. 98, 2319–2333 (2018)

    Article  Google Scholar 

  34. Sun, Y., Wang, D., Dong, H., Xue, R., Yu, S.: Pre-deformation for assembly performance of machine centers. Chinese J. Mech. Eng. 27, 528–536 (2014)

    Article  Google Scholar 

  35. Onat Ekinci, T., Mayer, J.R.R.: Cloutier, Investigation of accuracy of aerostatic guideways. Int. J. Mach. Tools Manuf. 49, 478–487 (2009)

    Article  Google Scholar 

  36. Harris, T.A., Kotzalas, M.N.: Rolling bearing analysis: essential concepts of bearing technology, 5thed. Taylor and Francis, NewYork (2007)

    Google Scholar 

  37. Palmgren, A.: Ball and roller bearing engineering. SKF Industries Inc, Philadelphia (1959)

    Google Scholar 

  38. Liu, J., Shao, Y., Lim, T.C.: Vibration analysis of ball bearings with a localized defect applying piecewise response function. Mech. Mach. Theory 56, 156–169 (2012)

    Article  Google Scholar 

  39. Suh, J.D., Lee, D.G., Kegg, R.: Composite machine tool structures for high speed milling machines. CIRP Ann. 51, 285–288 (2002)

    Article  Google Scholar 

  40. Wang, W., Zhou, Y., Wang, H., Li, C., Zhang, Y.: Vibration analysis of a coupled feed system with nonlinear kinematic joints. Mech. Mach. Theory 134, 562–581 (2019)

    Article  Google Scholar 

  41. THK Technical Support Site, https://tech.thk.com/en/products/pdfs/_en_a15_072.pdf. in, 2021.

  42. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  43. Torvik, P.J.: On estimating system damping from frequency response bandwidths. J. Sound Vib. 330, 6088–6097 (2011)

    Article  Google Scholar 

  44. Chandra, N.H., Sekhar, A.S.: Swept sine testing of rotor-bearing system for damping estimation. J. Sound Vib. 333, 604–620 (2014)

    Article  Google Scholar 

  45. Satterly, J.: The moments of inertia of some polyhedra. Math. Gaz. 42, 11–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China (Grant No. 52075087), the Fundamental Research Funds for the Central Universities (Grant No. N2003006, and N2103003), and the Natural Science Foundation of Heilongjiang Province (HL2020A017).

Author information

Authors and Affiliations

Authors

Contributions

ZL contributed to methodology, investigation, experimental, writing—Original Draft, writing—review & editing. MX contributed to resources and supervision. HZ contributed to resources, writing—reviewing and editing, supervision, writing—review & editing. CL conceived the presented idea. GY conceived the presented idea. ZL carried out the experiment. HM contributed to coding. CW carried out the experiment. YZ contributed to resources and supervision.

Corresponding authors

Correspondence to Changyou Li or Guo Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data sets supporting the results of this article are included within the article and its additional files.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable. The article involves no studies on humans.

Consent for publication

TAll authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to [45], the moment of inertia of the platform about x, y and z axis can be calculated by

$$ I_{x} = \frac{1}{12}m\left( {w^{2} + d^{2} } \right) $$
$$ I_{y} = \frac{1}{12}m\left( {w^{2} + h^{2} } \right) $$
$$ I_{z} = \frac{1}{12}m\left( {h^{2} + d^{2} } \right) $$

where m is the mass of the platform, h, w, and d represent the height, width, and length, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Xu, M., Zhang, H. et al. Modeling and analyzing of nonlinear dynamics for linear guide slide platform considering assembly error. Nonlinear Dyn 108, 2193–2221 (2022). https://doi.org/10.1007/s11071-022-07345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07345-2

Keywords

Navigation