Skip to main content
Log in

A comprehensive nonlinear dynamic model for ball screw feed system with rolling joint characteristics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modern tendency of machine tools design requires more accurate model to predict the system dynamics, in order to anticipate its interaction with machining process. In this paper, a comprehensive dynamic model of ball screw feed system (BSFS) considering nonlinear kinematic joints is introduced to investigate the varying dynamic characteristics when worktable is subjected to combined load from six directions. The load–deformation relationship of each kinematic joint is dealt with a set of translational and angular spring elements. The nonlinear restoring force function of each joint involving coupling displacement is calculated. Based on the lumped mass method, the analytical 18-DOF dynamic equation is formulated by the analysis of the interaction force between joints. Model verification tests are conducted. The worktable response exhibits the abundant and fascinating nonlinear phenomena arising in nonlinear joint and coupling effect. The nonlinear behavior behaves significant difference owing to the variations of excitation, platform position, screw length, preload and damping of joints. Thus, the model is promising for comprehension of machine dynamic behavior and for development of sophisticated control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Altintas, Y., Verl, A., Brecher, C., Uriarte, L., Pritschow, G.: Machine tool feed drives. CIRP Ann. Manuf. Technol. 60(2), 779–796 (2011). https://doi.org/10.1016/j.cirp.2011.05.010

    Article  Google Scholar 

  2. Brecher, C., Eßer, B., Falker, J., Kneer, F., Fey, M.: Modelling of ball screw drives rolling element contact characteristics. CIRP Ann. Manuf. Technol. 67(1), 409–412 (2018). https://doi.org/10.1016/j.cirp.2018.04.109

    Article  Google Scholar 

  3. Kamalzadeh, A., Gordon, D.J., Erkorkmaz, K.: Robust compensation of elastic deformations in ball screw drives. Int. J. Mach. Tools Manuf. 50(6), 559–574 (2010). https://doi.org/10.1016/j.ijmachtools.2010.03.001

    Article  Google Scholar 

  4. Huang, H.-W., Tsai, M.-S., Huang, Y.-C.: Modeling and elastic deformation compensation of flexural feed drive system. Int. J. Mach. Tools Manuf. 132, 96–112 (2018). https://doi.org/10.1016/j.ijmachtools.2018.05.002

    Article  Google Scholar 

  5. Hung, J.-P., Lai, Y.-L., Lin, C.-Y., Lo, T.-L.: Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide. Int. J. Mach. Tools Manuf. 51(9), 731–739 (2011). https://doi.org/10.1016/j.ijmachtools.2011.05.002

    Article  Google Scholar 

  6. Liang, T., Lu, D., Yang, X., Zhang, J., Ma, X., Zhao, W.: Feed fluctuation of ball screw feed systems and its effects on part surface quality. Int. J. Mach. Tools Manuf. 101, 1–9 (2016). https://doi.org/10.1016/j.ijmachtools.2015.11.002

    Article  Google Scholar 

  7. Zhang, X., Zhang, J., Zhang, W., Liang, T., Liu, H., Zhao, W.: Integrated modeling and analysis of ball screw feed system and milling process with consideration of multi-excitation effect. Mech. Syst. Signal Proc. 98, 484–505 (2018). https://doi.org/10.1016/j.ymssp.2017.05.011

    Article  Google Scholar 

  8. Feng, G.-H., Pan, Y.-L.: Investigation of ball screw preload variation based on dynamic modeling of a preload adjustable feed-drive system and spectrum analysis of ball-nuts sensed vibration signals. Int. J. Mach. Tools Manuf. 52(1), 85–96 (2012). https://doi.org/10.1016/j.ijmachtools.2011.09.008

    Article  Google Scholar 

  9. Zhang, G.P., Huang, Y.M., Shi, W.H., Fu, W.P.: Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering. Int. J. Mach. Tools Manuf. 43(7), 699–706 (2003). https://doi.org/10.1016/s0890-6955(03)00026-9

    Article  Google Scholar 

  10. Li, B., Luo, B., Mao, X., Cai, H., Peng, F., Liu, H.: A new approach to identifying the dynamic behavior of CNC machine tools with respect to different worktable feed speeds. Int. J. Mach. Tools Manuf. 72, 73–84 (2013). https://doi.org/10.1016/j.ijmachtools.2013.06.004

    Article  Google Scholar 

  11. Zhang, J., Zhang, H., Du, C., Zhao, W.: Research on the dynamics of ball screw feed system with high acceleration. Int. J. Mach. Tools Manuf. 111, 9–16 (2016). https://doi.org/10.1016/j.ijmachtools.2016.09.001

    Article  Google Scholar 

  12. Wang, W., Li, C., Zhou, Y., Wang, H., Zhang, Y.: Nonlinear dynamic analysis for machine tool table system mounted on linear guides. Nonlinear Dyn. 94(3), 2033–2045 (2018). https://doi.org/10.1007/s11071-018-4473-x

    Article  Google Scholar 

  13. Wang, W., Zhou, Y., Wang, H., Li, C., Zhang, Y.: Vibration analysis of a coupled feed system with nonlinear kinematic joints. Mech. Mach. Theory 134, 562–581 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.01.014

    Article  Google Scholar 

  14. Yang, T., Hou, S., Qin, Z.-H., Ding, Q., Chen, L.-Q.: A dynamic reconfigurable nonlinear energy sink. J. Sound Vibr. 494, 115629 (2021). https://doi.org/10.1016/j.jsv.2020.115629

    Article  Google Scholar 

  15. Altintas, Y., Brecher, C., Weck, M., Witt, S.: Virtual machine tool. CIRP Ann. Manuf. Technol. 54(2), 115–138 (2005). https://doi.org/10.1016/s0007-8506(07)60022-5

    Article  Google Scholar 

  16. Vicente, D.A., Hecker, R.L., Villegas, F.J., Flores, G.M.: Modeling and vibration mode analysis of a ball screw drive. Int. J. Adv. Manuf. Technol. 58(1–4), 257–265 (2011). https://doi.org/10.1007/s00170-011-3375-6

    Article  Google Scholar 

  17. Dong, L., Tang, W.C.: Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances. ISA Trans. 53(1), 110–116 (2014). https://doi.org/10.1016/j.isatra.2013.08.009

    Article  Google Scholar 

  18. Wu, Q., Gu, F., Ball, A., Huang, H.: Hybrid model for the analysis of the modal properties of a ball screw vibration system. J. Mech. Sci. Technol. 35(2), 461–470 (2021). https://doi.org/10.1007/s12206-021-0104-4

    Article  Google Scholar 

  19. Frey, S., Dadalau, A., Verl, A.: Expedient modeling of ball screw feed drives. Prod. Eng. 6(2), 205–211 (2012). https://doi.org/10.1007/s11740-012-0371-0

    Article  Google Scholar 

  20. Sato, R.: Sensor-less estimation of positioning reversal value for ball screw feed drives. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 60, 116–120 (2019). https://doi.org/10.1016/j.precisioneng.2019.06.011

    Article  Google Scholar 

  21. Ansoategui, I., Campa, F.J.: Mechatronics of a ball screw drive using an N degrees of freedom dynamic model. Int. J. Adv. Manuf. Technol. 93(1–4), 1307–1318 (2017). https://doi.org/10.1007/s00170-017-0597-2

    Article  Google Scholar 

  22. Guo, C., Chen, L., Ding, J.: A novel dynamics model of ball-screw feed drives based on theoretical derivations and deep learning. Mech. Mach. Theory 141, 196–212 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.07.011

    Article  Google Scholar 

  23. Nguyen, T.L., Ro, S.-K., Park, J.-K.: Study of ball screw system preload monitoring during operation based on the motor current and screw-nut vibration. Mech. Syst. Signal Proc. 131, 18–32 (2019). https://doi.org/10.1016/j.ymssp.2019.05.036

    Article  Google Scholar 

  24. Wang, L., Liu, H., Yang, L., Zhang, J., Zhao, W., Lu, B.: The effect of axis coupling on machine tool dynamics determined by tool deviation. Int. J. Mach. Tools Manuf. 88, 71–81 (2015). https://doi.org/10.1016/j.ijmachtools.2014.09.003

    Article  Google Scholar 

  25. Zou, C., Zhang, H., Lu, D., Zhang, J., Zhao, W.: Effect of the screw–nut joint stiffness on the position-dependent dynamics of a vertical ball screw feed system without counterweight. Proc. Inst. Mech. Eng. Proc. Inst. Mech. Eng. C-J. Eng. Mech. Eng. Sci. 232(15), 2599–2609 (2017). https://doi.org/10.1177/0954406217722378

    Article  Google Scholar 

  26. Zhang, H., Liu, H., Du, C., lv D, Zhang J, Zhao W, : Dynamics analysis of a slender ball-screw feed system considering the changes of the worktable position. Proc. Inst. Mech. Eng. C-J. Eng. Mech. Eng. Sci. 233(8), 2685–2695 (2018). https://doi.org/10.1177/0954406218799781

    Article  Google Scholar 

  27. Zhang, W., Zhang, X., Zhang, J., Zhao, W.: Analysis of lead screw pre-stretching influences on the natural frequency of ball screw feed system. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 57, 30–44 (2019). https://doi.org/10.1016/j.precisioneng.2019.03.003

    Article  Google Scholar 

  28. Li, C., Xu, M., He, G., Zhang, H., Liu, Z., He, D., Zhang, Y.: Time-dependent nonlinear dynamic model for linear guideway with crowning. Tribol. Int. 151, 106413 (2020). https://doi.org/10.1016/j.triboint.2020.106413

    Article  Google Scholar 

  29. Xu, M., Zhang, H., Liu, Z., Li, C., Zhang, Y., Mu, Y., Hou, C.: A time-dependent dynamic model for ball passage vibration analysis of recirculation ball screw mechanism. Mech. Syst. Signal Proc. 157, 107632 (2021). https://doi.org/10.1016/j.ymssp.2021.107632

    Article  Google Scholar 

  30. Gu, J., Zhang, Y.: Dynamic analysis of a ball screw feed system with time-varying and piecewise-nonlinear stiffness. Proc. Inst. Mech. Eng. C-J. Eng. Mech. Eng. Sci. 233(18), 6503–6518 (2019). https://doi.org/10.1177/0954406219865923

    Article  Google Scholar 

  31. Xu, M., Cai, B., Li, C., Zhang, H., Liu, Z., He, D., Zhang, Y.: Dynamic characteristics and reliability analysis of ball screw feed system on a lathe. Mech. Mach. Theory 150, 103890 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103890

    Article  Google Scholar 

  32. Kong, X., Sun, W., Wang, B., Wen, B.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vibr. 346, 265–283 (2015). https://doi.org/10.1016/j.jsv.2015.02.021

    Article  Google Scholar 

  33. Liu, Z., Xu, M., Zhang, H., Miao, H., Li, Z., Li, C., Zhang, Y.: Nonlinear dynamic analysis of ball screw feed system considering assembly error under harmonic excitation. Mech. Syst. Signal Proc. 157, 107717 (2021). https://doi.org/10.1016/j.ymssp.2021.107717

    Article  Google Scholar 

  34. Liu, J., Shao, Y.: Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges. J. Sound Vibr. 398, 84–102 (2017). https://doi.org/10.1016/j.jsv.2017.03.007

    Article  Google Scholar 

  35. Zhang, X., Han, Q., Peng, Z., Chu, F.: A new nonlinear dynamic model of the rotor-bearing system considering preload and varying contact angle of the bearing. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 821–841 (2015). https://doi.org/10.1016/j.cnsns.2014.07.024

    Article  Google Scholar 

  36. Bai, C., Zhang, H., Xu, Q.: Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. Nonlinear Dyn. 53(3), 173–190 (2007). https://doi.org/10.1007/s11071-007-9306-2

    Article  MATH  Google Scholar 

  37. Wang, Z., Zhu, C.: A new model for analyzing the vibration behaviors of rotor-bearing system. Commun. Nonlinear Sci. Numer. Simul. 83, 105130 (2020). https://doi.org/10.1016/j.cnsns.2019.105130

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, W., Kong, X., Wang, B., Li, X.: Statics modeling and analysis of linear rolling guideway considering rolling balls contact. Proc. Inst. Mech. Eng. C-J. Eng. Mech. Eng. Sci. 229(1), 168–179 (2014). https://doi.org/10.1177/0954406214531943

    Article  Google Scholar 

  39. Harris, T.A.: Rolling bearing analysis, 4th edn. Wiley, New York (2001)

    Google Scholar 

  40. Wei, C.C., Lin, J.F.: Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations. J. Mech. Des. Trans. ASME 125(4), 717–733 (2003)

    Article  Google Scholar 

  41. Gunduz, A., Dreyer, J.T., Singh, R.: Effect of bearing preloads on the modal characteristics of a shaft-bearing assembly: experiments on double row angular contact ball bearings. Mech. Syst. Signal Proc. 31, 176–195 (2012). https://doi.org/10.1016/j.ymssp.2012.03.013

    Article  Google Scholar 

  42. Sopanen J, Mikkola A (2003) Dynamic model of a deep-groove ball bearing including localized and distributed defects, Part 1. Theo. Proc. Inst. Mech. Eng. Pt. K-J. Multi-Body Dyn., 217(3):201–211. doi:https://doi.org/10.1243/14644190360713551

  43. Yu, Y., Yao, G., Wu, Z.: Nonlinear primary responses of a bilateral supported X-shape vibration reduction structure. Mech. Syst. Signal Proc. 140, 106679 (2020). https://doi.org/10.1016/j.ymssp.2020.106679

    Article  Google Scholar 

  44. Li, S., Wu, Q., Zhang, Z.: Bifurcation and chaos analysis of multistage planetary gear train. Nonlinear Dyn. 75(1–2), 217–233 (2013). https://doi.org/10.1007/s11071-013-1060-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (Grant No. 52075087, No. U1708254) and the Fundamental Research Funds for the Central Universities (Grant No. N2003006, No. N2103003).

Author information

Authors and Affiliations

Authors

Contributions

Mengtao Xu contributed to methodology; investigation; experimental; writing–original draft; writing–review and editing. Changyou Li contributed to methodology; resources and supervision. Hongzhuang Zhang contributed to supervision; writing–review and editing. Zhendong Liu contributed to supervision; writing–review and editing. Yimin Zhang contributed to resources and supervision.

Corresponding author

Correspondence to Changyou Li.

Ethics declarations

Conflicts of interest

There is no conflict of interest in the submission of this manuscript, and the manuscript is approved by all the authors for publication.

Availability of data and material

All the experimental data used in this paper have been deposited into the Northeastern University Library and are publicly available for download.

Code availability

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable. The article involves no studies on humans.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Li, C., Zhang, H. et al. A comprehensive nonlinear dynamic model for ball screw feed system with rolling joint characteristics. Nonlinear Dyn 106, 169–210 (2021). https://doi.org/10.1007/s11071-021-06815-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06815-3

Keywords

Navigation