Skip to main content

Advertisement

Log in

Stochastic analysis of a nonlinear energy harvester with fractional derivative damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A fractionally damped vibration energy harvester excited by the wide-band random noise is investigated theoretically in this paper. Firstly, by introducing the generalized harmonic transformation, an equivalent uncoupled system only with respect to the mechanical states is established, while the external circuit and the fractional derivative damping are decoupled into damping and stiffness with amplitude-dependent coefficients, respectively. Then, a stochastic averaging operator technique is carried out to derive the stationary distribution of the mechanical states and furtherly obtain the mean square electric voltage (MSEV) and mean output power (MOP) of the energy harvester theoretically. Finally, the relationships between the fractional derivative and the MSEV and MOP are explored in detail to help improve the performance of the energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vinogradov, A.M., Schmidt, V.H., Tuthill, G.F., Bohannan, G.W.: Damping and electromechanical energy losses in the piezoelectric polymer PVDF. Mech. Mater. 36(10), 1007–1016 (2003)

    Article  Google Scholar 

  2. Cepnik, C., Lausecker, R., Wallrabe, U.: Review on electrodynamic energy harvesters-a classification approach. Micromachines 4(2), 168–196 (2013)

    Article  Google Scholar 

  3. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  4. Shu, Y.C., Lien, I.C.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15(6), 1499–1512 (2006)

    Article  Google Scholar 

  5. Erturk, A., Inman, D.J.: Introduction to Piezoelectric Energy Harvesting. Wiley, United Kingdom (2011)

    Book  Google Scholar 

  6. Wang, X.F., Wei, X.Y., Pu, D., Huan, R.H.: Single-electron detection utilizing coupled nonlinear microresonators. Microsyst. Nanoeng. 6(1), 327–333 (2020)

    Google Scholar 

  7. Wang, X.F., Huan, R.H., Zhu, W.Q., Pu, D., Wei, X.Y.: Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1:3. Mech. Syst. Signal Process. 146, 106981 (2021)

    Article  Google Scholar 

  8. Kumar, G.S., Prasad, G.: Piezoelectric relaxation in polymer and ferroelectric composites. J. Mater. Sci. 28, 2545–2550 (1993)

    Article  Google Scholar 

  9. Kwuimy, C.A.K., Litak, G., Nataraj, C.: Nonlinear analysis of energy harvesting systems with fractional order physical properties. Nonlinear Dyn. 80, 491–501 (2015)

    Article  Google Scholar 

  10. Hartley, T.T., Lorenzo, C.F.: A frequency-domain approach to optimal fractional-order damping. Nonlinear Dyn. 38, 69–84 (2004)

    Article  Google Scholar 

  11. Maia, N.M.M., Silva, J.M.M., Ribeiro, A.M.R.: On a general model for damping. J. Sound Vib. 218(5), 749–767 (1998)

    Article  Google Scholar 

  12. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)

    Article  Google Scholar 

  13. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. 16(3), 1140–1153 (2010)

    Article  MathSciNet  Google Scholar 

  14. Li, Z., Liu, L., Dehghan, S., Chen, Y., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2016)

    Article  MathSciNet  Google Scholar 

  15. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2010)

    Article  Google Scholar 

  16. Cao, J., Zhou, S., Inman, D.J., Chen, Y.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80(4), 1705–1719 (2015)

    Article  Google Scholar 

  17. Cao, J., Syta, A., Litak, G., Zhou, S., Inman, D.J., Chen, Y.: Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus 130(6), 103 (2015)

    Article  Google Scholar 

  18. McInnes, C.R., Gorman, D.G., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318(4–5), 655–662 (2008)

    Article  Google Scholar 

  19. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330(11), 2554–2564 (2010)

    Article  Google Scholar 

  20. Green, P.L., Worden, K., Atallah, K., Sims, N.D.: The benefits of duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J. Sound Vib. 331(20), 4504–4517 (2012)

    Article  Google Scholar 

  21. Chen, L., Zhao, T., Li, W., Zhao, J.: Bifurcation control of bounded noise excited duffing oscillator by a weakly fractional-order PIλDμ feedback controller. Nonlinear Dyn. 83(1–2), 529–539 (2016)

    Article  MathSciNet  Google Scholar 

  22. Huang, Z.L., Jin, X.L.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319(3–5), 1121–1135 (2008)

    Google Scholar 

  23. Paola, M.D., Failla, G., Pirrotta, A.: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems. Probabilist. Eng. Mech. 28(SI), 85–90 (2012)

    Article  Google Scholar 

  24. Xu, M., Jin, X., Wang, Y., Huang, Z.L.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78(2), 1451–1459 (2014)

    Article  MathSciNet  Google Scholar 

  25. Xu, M., Li, X.: Stochastic averaging for bistable vibration energy harvesting system. Int. J. Mech. Sci. 141, 206–212 (2018)

    Article  Google Scholar 

  26. Jin, X., Wang, Y., Xu, M., Huang, Z.: Semi-analytical solution of random response for nonlinear vibration energy harvesters. J. Sound Vib. 340, 267–282 (2015)

    Article  Google Scholar 

  27. Jiang, W.A., Chen, L.Q.: An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise. Commun. Nonlinear Sci. 19(8), 2897–2904 (2014)

    Article  Google Scholar 

  28. Jiang, W.A., Chen, L.Q.: Stochastic averaging of energy harvesting systems. Int. J. Nonlin. Mech. 85, 174–187 (2016)

    Article  Google Scholar 

  29. Jiang, W.A., Chen, L.Q.: Stochastic averaging based on generalized harmonic functions for energy harvesting systems. J. Sound Vib. 377, 264–283 (2016)

    Article  Google Scholar 

  30. Zhu, H.T.: Probabilistic solution of non-linear vibration energy harvesters driven by Poisson impulses. Probabilist. Eng. Mech. 48, 12–26 (2017)

    Article  Google Scholar 

  31. Ghouli, Z., Hamdi, M., Lakrad, F., Belhaq, M.: Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)

    Article  Google Scholar 

  32. Litak, G., Borowiec, M., Friswell, M.I., Adhikari, S.: Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions. J. Theor. Appl. Mech. 49(3), 757–764 (2011)

    Google Scholar 

  33. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

    Article  Google Scholar 

  34. Liu, D., Xu, Y., Li, J.: Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos Soliton. Fract. 104, 806–812 (2017)

    Article  Google Scholar 

  35. Liu, D., Xu, Y., Li, J.: Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties. J. Sound Vib. 399, 182–196 (2017)

    Article  Google Scholar 

  36. Yang, Y.G., Xu, W.: Stochastic analysis of monostable vibration energy harvesters with fractional derivative damping under Gaussian white noise excitation. Nonlinear Dyn. 94(1), 639–648 (2018)

    Article  Google Scholar 

  37. Xu, Z., Cheung, Y.K.: Averaging method using generalized harmonic functions for strongly non-Linear oscillators. J. Sound Vib. 174(4), 563–576 (1994)

    Article  MathSciNet  Google Scholar 

  38. Khasminskii, R.Z.: A Limit theorem for the solution of differential equations with random right-hand sides. Theor. Probab. Appl. 11(3), 390–406 (1966)

    Article  MathSciNet  Google Scholar 

  39. Kushner, H.J.: Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory. The MIT Press, London (1984)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China through the Grant Nos. 11972293, 11872307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghui Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: The averaging of the fractional derivative damping

Due to A and ϕ are slow variables, the following approximate relation can be obtained by Eq. (9):

$$ \theta (t - \tau ) \approx \theta (t) - \omega \tau . $$
(36)

Using Eq. (36), the averaging of the term associated with fractional derivative of Eq. (16) can be simplified as follows:

$$ \begin{aligned} C\left( A \right) & = \frac{{c_{0} }}{\pi A\omega \left( A \right)}\int_{0}^{2\pi } {D^{\alpha } \left( {A\cos \Theta } \right)} \sin \Theta {\text{d}}\Theta \\ & = \frac{{2c_{0} }}{{\Gamma \left( {1 - \alpha } \right)\omega \left( A \right)A}}\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{0}^{T} {\frac{{\text{d}}}{{{\text{d}}t}}\int_{0}^{t} {\frac{{X\left( {t - \tau } \right)}}{{\tau^{\alpha } }}{\text{d}}\tau } } \sin \Theta {\text{d}}t \\ & = \frac{{2c_{0} }}{{\Gamma \left( {1 - \alpha } \right)\omega \left( A \right)}}\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{0}^{T} {\cos \Theta \omega \left( A \right)\int_{0}^{t} {\frac{{\cos \left[ {\Theta \left( {t - \tau } \right)} \right]}}{{\tau^{\alpha } }}{\text{d}}\tau } } {\text{d}}t \\ & \approx \frac{{2c_{0} }}{{\Gamma \left( {1 - \alpha } \right)\omega \left( A \right)}}\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{0}^{T} {\cos \Theta \omega \left( A \right)\left[ {\cos \Theta \int_{0}^{t} {\frac{{\cos \left( {\omega \tau } \right)}}{{\tau^{\alpha } }}{\text{d}}\tau } } \right.} \\ & \quad \left. { + \sin \Theta \int_{0}^{t} {\frac{{\sin \left( {\omega \tau } \right)}}{{\tau^{\alpha } }}{\text{d}}\tau } } \right]{\text{d}}t \\ \end{aligned} $$
(37)
$$ \begin{aligned} K\left( A \right) & = \frac{{c_{0} }}{\pi A}\int_{0}^{2\pi } {D^{\alpha } } \left( {A\cos \Theta } \right)\cos \Theta {\text{d}}\Theta = \frac{{c_{0} }}{2}\omega^{\alpha } \left( A \right)\cos \left( {\frac{\alpha \pi }{2}} \right) \\ & = \frac{{2c_{0} }}{{\Gamma \left( {1 - \alpha } \right)A}}\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{0}^{T} {\left[ {\frac{{\text{d}}}{{{\text{d}}t}}\int_{0}^{t} {\frac{{X\left( {t - \tau } \right)}}{{\tau^{\alpha } }}{\text{d}}\tau } } \right]} \cos \Theta {\text{d}}t \\ & = \frac{{2c_{0} }}{{\Gamma \left( {1 - \alpha } \right)A}}\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\left\{ {\left. {\left( {\cos \Theta \int_{0}^{t} {\frac{{A\cos \left[ {\Theta \left( {t - \tau } \right)} \right]}}{{\tau^{\alpha } }}{\text{d}}\tau } } \right)} \right|_{0}^{T} } \right. \\ & \left. {\quad + \int_{0}^{T} {\sin \Theta \omega \left( A \right)\int_{0}^{t} {\frac{{A\cos \left[ {\Theta \left( {t - \tau } \right)} \right]}}{{\tau^{\alpha } }}{\text{d}}\tau } } {\text{d}}t} \right\} \\ & \approx \frac{{2c_{0} }}{{\Gamma \left( {1 - \alpha } \right)}}\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{0}^{T} {\sin \Theta \omega \left( A \right)\left[ {\cos \Theta \int_{0}^{t} {\frac{{\cos \left( {\omega \tau } \right)}}{{\tau^{\alpha } }}{\text{d}}\tau + \sin \Theta \int_{0}^{t} {\frac{{\sin \left( {\omega \tau } \right)}}{{\tau^{\alpha } }}{\text{d}}\tau } } } \right]} {\text{d}}t \\ \end{aligned} $$
(38)

In Eqs. (37) and (38), A is treated as a constant since it varies slowly. To simplify Eqs. (37) and (38) furtherly, the following asymptotic integrals can be applied:

$$ \int_{0}^{t} {\frac{{\cos \left( {\omega \tau } \right)}}{{\tau^{q} }}{\text{d}}\tau } = \omega^{{\left( {q - 1} \right)}} \left[ {\Gamma \left( {1 - q} \right)\sin \left( {\frac{q\pi }{2}} \right) + \frac{\sin \left( s \right)}{{s^{q} }} + O\left( {s^{( - q - 1)} } \right)} \right] $$
(39)
$$ \int_{0}^{t} {\frac{{\sin \left( {\omega \tau } \right)}}{{\tau^{q} }}{\text{d}}\tau } = \omega^{{\left( {q - 1} \right)}} \left[ {\Gamma \left( {1 - q} \right)\cos \left( {\frac{q\pi }{2}} \right) + \frac{\cos \left( s \right)}{{s^{q} }} + O\left( {s^{( - q - 1)} } \right)} \right] $$
(40)

Substituting Eqs. (39)–(40) into Eqs. (37)–(38), and completing the averaging can lead to

$$ C\left( A \right) = \frac{{c_{0} }}{\pi A\omega (A)}\int_{0}^{2\pi } {D^{\alpha } } \left( {A\cos \Theta } \right)\sin \Theta {\text{d}}\Theta = \frac{{c_{0} }}{2}\omega^{\alpha - 1} \left( A \right)\sin \left( {\frac{\alpha \pi }{2}} \right) $$
(41)
$$ K\left( A \right) = \frac{{c_{0} }}{\pi A}\int_{0}^{2\pi } {D^{\alpha } } \left( {A\cos \Theta } \right)\cos \Theta {\text{d}}\Theta = \frac{{c_{0} }}{2}\omega^{\alpha } \left( A \right)\cos \left( {\frac{\alpha \pi }{2}} \right) $$
(42)

1.2 Appendix B: The simulation of the fractional derivative damping and wide-band noises

(i). The definition of the fractional derivative in Eq. (2) could be reformulated as:

$$ \begin{aligned} D^{\alpha } \overline{X}\left( \tau \right) & = \frac{1}{{\Gamma \left( {1 - \alpha } \right)}}\frac{{\text{d}}}{{{\text{d}}\tau }}\int_{0}^{\tau } {\frac{{\overline{X}\left( {\tau - \varsigma } \right)}}{{\varsigma^{\alpha } }}{\text{d}}\varsigma = \frac{1}{{\Gamma \left( {1 - \alpha } \right)}}\left( {\frac{X(0)}{{\tau^{\alpha } }} + \int_{0}^{\tau } {\frac{{\dot{\overline{X}}\left( \varsigma \right)}}{{(\tau - \varsigma )^{\alpha } }}{\text{d}}\varsigma } } \right) \, } \\ & = \frac{1}{{\Gamma \left( {1 - \alpha } \right)}}\left( {\frac{X(0)}{{\tau^{\alpha } }} + \int_{0}^{\tau } {\frac{{\dot{\overline{X}}\left( {\tau - \varsigma } \right)}}{{\varsigma^{\alpha } }}{\text{d}}\varsigma } } \right) = \frac{1}{{\Gamma \left( {1 - \alpha } \right)}}\frac{X(0)}{{\tau^{\alpha } }} \\ & \quad + \frac{1}{{\Gamma \left( {2 - \alpha } \right)}}\int_{0}^{{\tau^{1 - \alpha } }} {\dot{\overline{X}}\left( {\tau - s^{{{1 \mathord{\left/ {\vphantom {1 {(1 - \alpha )}}} \right. \kern-\nulldelimiterspace} {(1 - \alpha )}}}} } \right){\text{d}}s} \quad (s = \varsigma^{\alpha } ,0 < \alpha < 1) \\ \end{aligned} $$
(43)

Thus, the following numerical integration can be employed with the initial condition \(D^{\alpha } \overline{X}\left( 0 \right) = \dot{\overline{X}}_{0}\) given in Ref. [14],

$$ \begin{aligned} D^{\alpha } \overline{X}\left( {n\Delta \tau } \right) & = \frac{1}{{\Gamma \left( {1 - \alpha } \right)}}\frac{{\overline{X}_{0} }}{{(n\Delta \tau )^{\alpha } }} + \frac{1}{{\Gamma \left( {2 - \alpha } \right)}}\sum\limits_{j = 1}^{n} {\int_{{((j - 1)\Delta \tau )^{1 - \alpha } }}^{{(j\Delta \tau )^{1 - \alpha } }} {\dot{\overline{X}}\left( {n\Delta \tau - s^{{{1 \mathord{\left/ {\vphantom {1 {(1 - \alpha )}}} \right. \kern-\nulldelimiterspace} {(1 - \alpha )}}}} } \right){\text{d}}s} } \\ & { = }\frac{1}{{\Gamma \left( {1 - \alpha } \right)}}\frac{{\overline{X}(0)}}{{(n\Delta \tau )^{\alpha } }} + \frac{1}{{\Gamma \left( {2 - \alpha } \right)}}\sum\limits_{j = 1}^{n} {\frac{{(j\Delta \tau )^{1 - \alpha } - ((j - 1)\Delta \tau )^{1 - \alpha } }}{2}(\dot{\overline{X}}_{n - j} + \dot{\overline{X}}_{n + 1 - j} )} \, \\ \end{aligned} $$
(44)

(ii). To generate the samples of independent wide-band noises \(\xi_{i} (t)\), the following second-order linear filters can be adopted:

$$ \ddot{\xi }_{i} + 2\kappa_{i} \omega_{i} \dot{\xi }_{i} + \omega_{i}^{2} \xi_{i} = W_{i} \left( t \right), \, i = 1,2. $$
(45)

where \(W_{i} (t)\) denote the independent Gaussian white noises with intensities \(D_{i}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zhang, D., Deng, Z. et al. Stochastic analysis of a nonlinear energy harvester with fractional derivative damping. Nonlinear Dyn 108, 1973–1986 (2022). https://doi.org/10.1007/s11071-022-07338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07338-1

Keywords

Navigation