Skip to main content

Advertisement

Log in

Stochastic analysis of monostable vibration energy harvesters with fractional derivative damping under Gaussian white noise excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To the best of authors’ knowledge, the dynamical behaviors of vibration energy harvesters with fractional derivative damping have not been discussed by researchers with the help of the stochastic averaging method. As the fractional-order models are more accurate than the classical integer-order models, so it is necessary to investigate the dynamical behaviors of fractional vibration energy harvesters. This paper aims to investigate the stochastic response of monostable vibration energy harvesters with fractional derivative damping under Gaussian white noise excitation. First, we can get the equivalent stochastic system with the help of variable transformation. Then, the approximately analytical solutions of the equivalent stochastic system can be obtained by the stochastic averaging method. Third, the numerical results are considered as the benchmark to prove the effectiveness of the proposed method. The results indicate that the proposed method has a satisfactory level of accuracy. We also discuss the effect of system parameters on the mean square voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, Berlin (2009)

    Book  Google Scholar 

  2. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)

    Book  Google Scholar 

  3. Harne, R., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  4. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)

    Article  Google Scholar 

  5. Beeby, S.P., Tudor, M.J., White, N.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175 (2006)

    Article  Google Scholar 

  6. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–35 (2016)

    Article  MathSciNet  Google Scholar 

  7. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24, 1303–12 (2013)

    Article  Google Scholar 

  8. Oumbé Tékam, G., Kitio Kwuimy, C., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25, 013112 (2015)

    Article  MathSciNet  Google Scholar 

  9. Haitao, L., Weiyang, Q., Chunbo, L., Wangzheng, D., Zhiyong, Z.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25, 015001 (2015)

    Article  Google Scholar 

  10. Zhou, S., Cao, J., Erturk, A., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 173901 (2013)

    Article  Google Scholar 

  11. Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013)

    Article  Google Scholar 

  12. Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process. 90, 317–33 (2017)

    Article  Google Scholar 

  13. González-Gaxiola, O.: Periodic Solution for Strongly Nonlinear Oscillators by He’s New Amplitude-Frequency Relationship. Int. J. Appl. Comput. Math. 3, 1249–59 (2017)

    Article  MathSciNet  Google Scholar 

  14. Marin, M.: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. 132, 044501 (2010)

    Article  Google Scholar 

  15. Litak, G., Friswell, M., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)

    Article  Google Scholar 

  16. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–64 (2011)

    Article  Google Scholar 

  17. Green, P., Worden, K., Atallah, K., Sims, N.: The benefits of Duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J. Sound Vib. 331, 4504–17 (2012)

    Article  Google Scholar 

  18. Xu, M., Jin, X., Wang, Y., Huang, Z.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78, 1451–9 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jin, X., Wang, Y., Xu, M., Huang, Z.: Semi-analytical solution of random response for nonlinear vibration energy harvesters. J. Sound Vib. 340, 267–82 (2015)

    Article  Google Scholar 

  20. Jiang, W.-A., Chen, L.-Q.: An equivalent linearization technique for nonlinear piezoelectric energy harvesters under Gaussian white noise. Commun. Nonlinear Sci. Numer. Simul. 19, 2897–904 (2014)

    Article  Google Scholar 

  21. Zhu, H.: Probabilistic solution of non-linear vibration energy harvesters driven by Poisson impulses. Probab. Eng. Mech. 48, 12–26 (2017)

    Article  Google Scholar 

  22. Yue, X.-L., Xu, W., Zhang, Y., Wang, L.: Global Analysis of Response in the Piezomagnetoelastic Energy Harvester System under Harmonic and Poisson White Noise Excitations. Commun. Theor. Phys. 64, 420 (2015)

    Article  Google Scholar 

  23. Ghouli, Z., Hamdi, M., Lakrad, F., Belhaq, M.: Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–85 (2017)

    Article  Google Scholar 

  24. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  25. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801 (2010)

    Article  Google Scholar 

  26. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–53 (2011)

    Article  MathSciNet  Google Scholar 

  27. Chen, Y., Petras, I., Xue, D.: Fractional order control-a tutorial. American Control Conference, ACC’09. IEEE2009. pp. 1397–411 (2009)

  28. Li, Z., Liu, L., Dehghan, S., Chen, Y., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90, 1165–81 (2017)

    Article  MathSciNet  Google Scholar 

  29. Di Paola, M., Failla, G., Pirrotta, A.: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems. Probab. Eng. Mech. 28, 85–90 (2012)

    Article  Google Scholar 

  30. Huang, Z., Jin, X.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319, 1121–35 (2009)

    Article  Google Scholar 

  31. Chen, L., Zhao, T., Li, W., Zhao, J.: Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order PI \(^{\varvec {\lambda }} \varvec {D}^{\varvec {\mu }}\) feedback controller. Nonlinear Dyn. 83, 529–39 (2016)

    Article  MathSciNet  Google Scholar 

  32. Di Matteo, A., Kougioumtzoglou, I.A., Pirrotta, A., Spanos, P.D., Di Paola, M.: Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the Wiener path integral. Probab. Eng. Mech. 38, 127–35 (2014)

    Article  Google Scholar 

  33. Yang, J., Sanjuán, M.A., Liu, H., Litak, G., Li, X.: Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system. Commun. Nonlinear Sci. Numer. Simul. 41, 104–17 (2016)

    Article  MathSciNet  Google Scholar 

  34. Sun, Z., Zhang, J., Yang, X., Xu, W.: Taming stochastic bifurcations in fractional-order systems via noise and delayed feedback. Chaos 27, 083102 (2017)

    Article  MathSciNet  Google Scholar 

  35. Deng, M.-L., Zhu, W.-Q.: Response of MDOF strongly nonlinear systems to fractional Gaussian noises. Chaos 26, 084313 (2016)

    Article  MathSciNet  Google Scholar 

  36. Dai, H., Zheng, Z., Wang, W.: Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen-Loève expansion. Commun. Nonlinear Sci. Numer. Simul. 49, 145–58 (2017)

    Article  MathSciNet  Google Scholar 

  37. Cao, J., Syta, A., Litak, G., Zhou, S., Inman, D.J., Chen, Y.: Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus. 130, 103 (2015)

    Article  Google Scholar 

  38. Cao, J., Zhou, S., Inman, D.J., Chen, Y.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80, 1705–19 (2015)

    Article  Google Scholar 

  39. Kwuimy, C.A.K., Litak, G.: Enhance limit cycle oscillation in a wind flow energy harvester system with fractional order derivatives. Theor. Appl. Mech. Lett. 4, 12 (2014)

    Google Scholar 

  40. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–79 (2012)

    Article  Google Scholar 

  41. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, London (1998)

    MATH  Google Scholar 

  42. Yang, Y., Xu, W., Gu, X., Sun, Y.: Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise. Chaos Solitons Fractals. 77, 190–204 (2015)

    Article  MathSciNet  Google Scholar 

  43. Jiang, W.-A., Chen, L.-Q.: Stochastic averaging of energy harvesting systems. Int. J. Non-Linear Mech. 85, 174–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11472212, 11532011, 11702201). The first author (Y.-G. Yang) would like to thank the China Scholarship Council (CSC) for sponsoring his study in the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Xu, W. Stochastic analysis of monostable vibration energy harvesters with fractional derivative damping under Gaussian white noise excitation. Nonlinear Dyn 94, 639–648 (2018). https://doi.org/10.1007/s11071-018-4382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4382-z

Keywords

Navigation