Skip to main content

Advertisement

Log in

Theoretical analysis of vibration energy harvesters with nonlinear damping and nonlinear stiffness

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Theoretical analysis of the vibration energy harvesters with nonlinear damping and nonlinear stiffness is provided to reveal their physical mechanism. Both the method of multiple scales and the method of averaging are employed to derive the theoretical solutions of the output voltage and power of the harvesters. The corresponding theoretical solutions are verified by direct numerical simulations. The nonlinear response characteristics are conducted by combining the stability analysis and the classification of the theoretical solutions. Especially, the dynamical hysteresis criterion which is used to determine the softening or hardening property is derived for enhancing energy harvesting performance. Meanwhile, the backbone curve is obtained. In addition, the influence of the excitation amplitude, the stiffness, the damping exponent, and the electromechanical coupling coefficient on the output power of the harvesters is explored. Overall, the physical mechanism of the harvesters is revealed and a framework for the optimization of maximizing the output power is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, New York, 2011)

  2. L. Chen, W. Jiang, M. Panyam, M.F. Daqaq, J. Vib. Acoust. 138, 061007 (2016)

    Article  Google Scholar 

  3. S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)

    Article  ADS  Google Scholar 

  4. Y. Li, Y. Yang, X. Wang, B. Liu, X. Liang, J. Sound Vib. 428, 72 (2018)

    Article  ADS  Google Scholar 

  5. L. Zhao, S.C. Conlon, F. Semperlotti, Smart Mater. Struct. 23, 065021 (2014)

    Article  ADS  Google Scholar 

  6. H. Heidari, A. Afifi, Eur. Phys. J. Plus 132, 233 (2017)

    Article  Google Scholar 

  7. S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)

    Article  ADS  Google Scholar 

  8. S. Zhao, A. Erturk, Smart Mater. Struct. 22, 015002 (2012)

    Article  ADS  Google Scholar 

  9. S. Zhou, J. Wang, AIP Adv. 8, 075221 (2018)

    Article  ADS  Google Scholar 

  10. P.D. Mitcheson, T.C. Green, E.M. Yeatman, Microsyst. Technol. 13, 1629 (2007)

    Article  Google Scholar 

  11. Z. Yang, S. Zhou, J. Zu, D.J. Inman, Joule 2, 642 (2018)

    Article  Google Scholar 

  12. X. Wang, Z. Shi, J. Wang, H. Xiang, Smart Mater. Struct. 25, 055005 (2016)

    Article  ADS  Google Scholar 

  13. S. Zhou, J. Cao, G. Litak, J. Lin. TM-Tech. Mess. 85, 521 (2018)

    Article  Google Scholar 

  14. D. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2009)

    Article  ADS  Google Scholar 

  15. H. Li, W. Qin, W. Deng, R. Tian, Eur. Phys. J. Plus 131, 60 (2016)

    Article  Google Scholar 

  16. L. Chen, W. Jiang, J. Appl. Mech. 82, 031004 (2015)

    Article  ADS  Google Scholar 

  17. Z. Fang, Y. Zhang, X. Li, H. Ding, L. Chen, J. Vib. Acoust. 140, 021009 (2018)

    Article  Google Scholar 

  18. Z. Fang, Y. Zhang, X. Li, H. Ding, L. Chen, J. Sound. Vib. 391, 35 (2017)

    Article  ADS  Google Scholar 

  19. S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106, 093901 (2015)

    Article  ADS  Google Scholar 

  20. M.F. Daqaq, J. Sound. Vib. 329, 3621 (2010)

    Article  ADS  Google Scholar 

  21. S.C. Stanton, C.C. Mcgehee, B.P. Mann, Appl. Phys. Lett. 95, 421 (2009)

    Article  Google Scholar 

  22. P. Firoozy, S.E. Khadem, S.M. Pourkiaee, Int. J. Eng. Sci. 111, 113 (2017)

    Article  Google Scholar 

  23. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  24. W. Liu, A. Bade, F. Formosa, Y.P. Wu, A. Agbossou, Smart Mater. Struct. 22, 035013 (2013)

    Article  ADS  Google Scholar 

  25. J. Cao, A. Syta, G. Litak, S. Zhou, D.J. Inman, Y. Chen, Eur. Phys. J. Plus 130, 103 (2015)

    Article  Google Scholar 

  26. P. Harris, C.R. Bowen, H.A. Kim, G. Litak, Eur. Phys. J. Plus 131, 109 (2016)

    Article  Google Scholar 

  27. S. Chiacchiari, F. Romeo, D.M. McFarland, L.A. Bergman, A.F. Vakakis, Int. J. Nonlinear Mech. 94, 84 (2017)

    Article  ADS  Google Scholar 

  28. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014)

    Article  Google Scholar 

  29. G.T.O. Tékam, C.A.K. Kwuimy, P. Woafo, Chaos 25, 013112 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Zhu, X. Ren, W. Qin, Z. Zhou, Arch. Appl. Mech. 87, 45 (2017)

    Article  ADS  Google Scholar 

  31. S. Zhou, L. Zuo, Commun. Nonlinear Sci. 61, 271 (2018)

    Article  Google Scholar 

  32. D. Zhu, M.J. Tudor, S.P. Beeby, Meas. Sci. Technol. 21, 022001 (2009)

    Article  ADS  Google Scholar 

  33. P. Kim, Y.J. Yoon, J. Seok, Nonlinear Dyn. 83, 1823 (2016)

    Article  Google Scholar 

  34. P. Alevras, S. Theodossiades, H. Rahnejat, Appl. Phys. Lett. 110, 233901 (2017)

    Article  ADS  Google Scholar 

  35. Y. Cheng, N. Wu, Q. Wang, J. Sound. Vib. 396, 69 (2017)

    Article  ADS  Google Scholar 

  36. M. Lallart, S.R. Anton, D.J. Inman, J. Intell. Mater. Syst. Struct. 21, 897 (2010)

    Article  Google Scholar 

  37. L. Gu, C. Livermore, Appl. Phys. Lett. 97, 081904 (2010)

    Article  ADS  Google Scholar 

  38. N.A. Aboulfotoh, M.H. Arafa, S.M. Megahed, Sensors Actuators A - Phys. 201, 328 (2013)

    Article  Google Scholar 

  39. H. Xue, Y. Hu, Q.M. Wang, IEEE. Trans. Ultrason., Ferroelectr., Freq. Control 55, 2097 (2008)

    Article  Google Scholar 

  40. P.J. Cornwell, J. Goethal, J. Kowko, M. Damianakis, J. Intell. Mater. Syst. Struct. 16, 825 (2005)

    Article  Google Scholar 

  41. Y. Yang, D. Upadrashta, Nonlinear Dyn. 84, 2487 (2016)

    Article  Google Scholar 

  42. C. Maruccio, G. Quaranta, P. Montegiglio, F. Trentadue, G. Acciani, Shock Vib. 2018, 2054873 (2018)

    Google Scholar 

  43. E.I. Rivin, Stiffness and Damping in Mechanical Design (Marcel Dekker Inc, New York, 1999)

  44. X.J. Yang, H.M. Srivastava, Commun. Nonlinear Sci. 29, 499 (2015)

    Article  Google Scholar 

  45. R.E. Mickens, Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods (World Scientific, Singapore, 2010)

  46. Z. Rakaric, I. Kovacic, Commun. Nonlinear Sci. 18, 1888 (2013)

    Article  Google Scholar 

  47. I. Kovacic, Int. J. Nonlinear Mech. 65, 44 (2014)

    Article  ADS  Google Scholar 

  48. I. Kovacic, Chaos, Solitons Fractals 44, 891 (2011)

    Article  ADS  Google Scholar 

  49. G. Litak, M. Borowiec, A. Syta, Z. Angew. Math. Mech. 87, 590 (2007)

    Article  Google Scholar 

  50. P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, P. Stepanov, Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness (Taylor & Francis, New York, 1989)

  51. C.A.K. Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015)

    Article  Google Scholar 

  52. D. Huang, W. Xu, W. Xie, Y. Liu, Nonlinear Dyn. 81, 641 (2015)

    Article  Google Scholar 

  53. S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, J. Appl. Phys. 108, 074903 (2010)

    Article  ADS  Google Scholar 

  54. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer, Berlin, 2006)

  55. S. Zhou, J. Cao, D.J. Inman, J. Lin, D. Li, J. Sound Vib. 373, 223 (2016)

    Article  ADS  Google Scholar 

  56. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, Chichester, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Li, R., Zhou, S. et al. Theoretical analysis of vibration energy harvesters with nonlinear damping and nonlinear stiffness. Eur. Phys. J. Plus 133, 510 (2018). https://doi.org/10.1140/epjp/i2018-12298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12298-0

Navigation