Skip to main content
Log in

Improved artificial bee colony algorithm with dynamic population composition for optimization problems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The artificial bee colony (ABC) algorithm is an effective swarm-based meta-heuristic algorithm for optimization problems. Nevertheless, slow convergence speed has affected its competitiveness. In order to improve its performance, an improved ABC with dynamic composition (ABCDC) is proposed in this paper. Since the original ABC and its most variants use constant ratio between employed bees and onlooker bees, which causes that the number of onlooker bees is insufficient to exploit the searching space in limited time. Therefore, we propose a mechanism to adjust the number of employed bees and onlooker bees in order to find the global optimum more effectively. Moreover, Symmetric Latin Hypercube Design is utilized to enhance the diversity of initial population. Besides, two differential search equations with self-adaptive parameters are used in the employed bee phase and onlooker bee phase. Finally, to evaluate the performance of ABCDC, comparisons with four state-of-the-art ABC variations and the original one have been done on 22 benchmark problems with different dimensions. And four meta-heuristic algorithms were also involved to fully evaluate the effectiveness of ABCDC. The experimental results demonstrate that ABCDC is better than the competitors in terms of its solution quality and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

The datasets supporting the conclusions of this article are included within the article and its supplementary file.

References

  1. Babaoglu, I.: Artificial bee colony algorithm with distribution-based update rule. Appl. Soft Comput. 34, 851–861 (2015)

    Article  Google Scholar 

  2. Karaboga, D.: An idea based on honey bee swarm for numerical optimization 200, 1–10 (2005)

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  4. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications. SAGA 2009. Lecture Notes in Computer Science, vol. 5792, pp. 169–178 (2009)

  5. Li, X.T., Yin, M.H.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77, 61–71 (2014)

    Article  MathSciNet  Google Scholar 

  6. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  7. Zhou, Y., Zhang, W.J., Kang, J.H., Zhang, X., Wang, X.: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection. Inf. Sci. 547, 841–859 (2021)

    Article  MathSciNet  Google Scholar 

  8. Hu, W., Wen, G.G., Rahmani, A., Yu, Y.G.: Parameters estimation using mABC algorithm applied to distributed tracking control of unknown nonlinear fractional-order multi-agent systems. Commun. Nonlinear Sci. Numer. Simul. 79, 104933 (2019)

    Article  MathSciNet  Google Scholar 

  9. Liu, X.Y.: Optimization design on fractional order PID controller based on adaptive particle swarm optimization algorithm. Nonlinear Dyn. 84, 379–386 (2016)

    Article  MathSciNet  Google Scholar 

  10. Das, P.K., Jena, P.K.: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators. Appl. Soft Comput. 92, 106312 (2020)

    Article  Google Scholar 

  11. Wei, J.M., Yu, Y.G.: A novel cuckoo search algorithm under adaptive parameter control for global numerical optimization. Soft Comput. 24, 4917–4940 (2020)

    Article  Google Scholar 

  12. Gao, K.Z., He, Z.M., Huang, Y., Duan, P.Y., Suganthan, P.N.: A survey on meta-heuristics for solving disassembly line balancing, planning and scheduling problems in remanufacturing. Swarm Evol. Comput. 57 (2020)

  13. Chen, Y., Pi, D.C., Wang, B.: Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system. Nonlinear Dyn. 97, 1343–1358 (2019)

    Article  Google Scholar 

  14. Wang, H., Wang, W.J., Xiao, S.Y., Cui, Z.H., Xu, M.Y., Zhou, X.Y.: Improving artificial bee colony algorithm using a new neighborhood selection mechanism. Inf. Sci. 527, 227–240 (2020)

    Article  MathSciNet  Google Scholar 

  15. Alizadegan, A., Asady, B., Ahmadpour, M.: Two modified versions of artificial bee colony algorithm. Appl. Math. Comput. 225, 601–609 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Hu, W., Yu, Y.G., Zhang, S.: A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems. Nonlinear Dyn. 82, 1441–1456 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217, 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Gao, W.F., Liu, S.Y., Huang, L.L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    Article  MathSciNet  Google Scholar 

  19. Xiang, Y., Peng, Y.M., Zhong, Y.B., Chen, Z.Y., Lu, X.W., Zhong, X.J.: A particle swarm inspired multi-elite artificial bee colony algorithm for real-parameter optimization. Comput. Optim. Appl. 57, 493–516 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhang, M., Tian, N., Palade, V., Ji, Z.C., Wang, Y.: Cellular artificial bee colony algorithm with gaussian distribution. Inf. Sci. 462, 374–401 (2018)

    Article  MathSciNet  Google Scholar 

  21. Karaboga, D., Gorkemli, B.: A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Appl. Soft Comput. 23, 227–238 (2014)

    Article  Google Scholar 

  22. Gao, W.F., Liu, S.Y., Huang, L.L., Dai, C.: Artificial bee colony algorithm based on information learning. IEEE Trans. Cybern. 45(12), 2827–2839 (2015)

    Article  Google Scholar 

  23. Xue, Y., Jiang, J.M., Zhao, B.P., Ma, T.H.: A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. 22, 2935–2952 (2018)

    Article  Google Scholar 

  24. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proc. IEEE Congress on Evolutionary Computation (CEC), vol. 2, pp. 1785–1791 (2005)

  25. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  26. Awad, N., Ali, M.Z., Reynolds, R.G.: A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1098–1105 (2015)

  27. Cui, L.Z., Li, G.H., Zhu, Z.X., Lin, Q.Z., Wen, Z.K., Lu, N., Wong, K.C., Chen, J.Y.: A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization. Inf. Sci. 414, 53–67 (2017)

    Article  MathSciNet  Google Scholar 

  28. Cui, L.Z., Zhang, K., Li, G.H., Wang, X.Z., Yang, S., Ming, Z., Huang, J.Z., Lu, N.: A smart artificial bee colony algorithm with distance-fitness-based neighbor search and its application. Future Gener. Comput. Syst. 89, 478–493 (2018)

    Article  Google Scholar 

  29. Formica, G., Milicchio, F.: Kinship-based differential evolution algorithm for unconstrained numerical optimization. Nonlinear Dyn. 99, 1341–1361 (2020)

    Article  Google Scholar 

  30. Li, J.Q., Pan, Q.K.: Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Inf. Sci. 316, 487–502 (2015)

    Article  Google Scholar 

  31. Rekaby, A., Youssif, A.A., Eldin, A.S.: Introducing adaptive artificial bee colony algorithm and using it in solving traveling salesman problem. In: Science and Information Conference 2013, pp. 502–506 (2013)

  32. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2888–2901 (2011)

    Article  Google Scholar 

  33. Gao, H., Shi, Y.J., Pun, C.M., Kwong, S.: An improved artificial bee colony algorithm with its application. IEEE Trans. Ind. Inform. 15(4), 1853–1865 (2019)

    Article  Google Scholar 

  34. Zabihi, F., Nasiri, B.: A novel history-driven artificial bee colony algorithm for data clustering. Appl. Soft Comput. 71, 226–241 (2018)

    Article  Google Scholar 

  35. Gao, W.F., Liu, S.Y., Huang, L.L.: Enhancing artificial bee colony algorithm using more information-based search equations. Inf. Sci. 270, 112–133 (2014)

    Article  MathSciNet  Google Scholar 

  36. Kıran, M.S., Gündüz, M.: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl. Soft Comput. 13(4), 2188–2203 (2013)

    Article  Google Scholar 

  37. Li, Z., Wang, W., Yan, Y.Y., Li, Z.: PS-ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Syst. Appl. 42(22), 8881–8895 (2015)

    Article  Google Scholar 

  38. Li, X.T., Yin, M.H.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77, 61–71 (2014)

    Article  MathSciNet  Google Scholar 

  39. Gao, W.F., Huang, L.L., Wang, J., Liu, S.Y., Qin, C.D.: Enhanced artificial bee colony algorithm through differential evolution. Appl. Soft Comput. 48, 137–150 (2016)

    Article  Google Scholar 

  40. Kuang, F.J., Jin, Z., Xu, W.H., Zhang, S.Y.: A novel chaotic artificial bee colony algorithm based on tent map, pp. 235–241 (2014)

  41. Gao, W.F., Liu, S.Y., Huang, L.L.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 43(3), 1011–1024 (2013)

    Article  Google Scholar 

  42. Kang, F., Li, J.J., Ma, Z.Y.: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf. Sci. 181, 3508–3531 (2011)

    Article  MathSciNet  Google Scholar 

  43. Ji, J.K., Song, S.B., Tang, C., Gao, S.C., Tang, Z., Todo, Y.: An artificial bee colony algorithm search guided by scale-free networks. Inf. Sci. 473, 142–165 (2019)

    Article  Google Scholar 

  44. Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans. Evol. Comput. 8(5), 490–505 (2004)

    Article  Google Scholar 

  45. Zhao, Z.W., Yang, J.M., Hu, Z.Y., Che, H.J.: A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems. Eur. J. Oper. Res. 250(1), 30–45 (2016)

    Article  MathSciNet  Google Scholar 

  46. Ye, K.Q., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric Latin hypercube designs. J. Stat. Plan. Inference 90(1), 145–159 (2000)

    Article  MathSciNet  Google Scholar 

  47. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  48. Farah, A., Belazi, A.: A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn. 93, 1451–1480 (2018)

    Article  Google Scholar 

  49. Yang, X., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), pp. 210–214 (2009)

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 2020RC103 and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Hu, W. & Rahmani, A. Improved artificial bee colony algorithm with dynamic population composition for optimization problems. Nonlinear Dyn 107, 743–760 (2022). https://doi.org/10.1007/s11071-021-06983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06983-2

Keywords

Navigation