Skip to main content
Log in

A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is an important issue to estimate parameters of uncertain fractional-order chaotic systems in nonlinear science. In this paper, fractional orders as well as systematic parameters of fractional-order chaotic systems are all considered as independent variables. Firstly, the parameter estimation problem is transformed into a multi-dimensional function optimization problem. And in the meantime, an effective hybrid artificial bee colony algorithm is proposed to deal with the parameter estimation problem. Numerical simulations are conducted on two typical fractional-order chaotic systems to test the effectiveness of the proposed method. The experiments’ results show that the proposed approach for identification of uncertain fractional-order chaotic systems is a successful and promising method with higher calculation accuracy and faster convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 14(3), 475–490 (2011)

  2. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Netherlands (2006)

    MATH  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, USA (1998)

    Google Scholar 

  5. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  6. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

  7. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. Acta Mech. 120(1–4), 109–125 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Laskin, N.: Fractional market dynamics. Phys. A 287(3), 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  9. Chen, G., Friedman, E.G.: An RLC interconnect model based on Fourier analysis. IEEE Trans. Comput. Aided Des. 24(2), 170–183 (2005)

    Article  Google Scholar 

  10. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  11. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Noninteger Order Circuits and Systems: An Introduction. World Scientific, Singapore (2000)

    Google Scholar 

  13. Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 14 (2013). doi:10.1155/2013/356215

  14. Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R.F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67(1), 893–901 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. 15(11), 3536–3546 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gao, F., Fei, F.X., Lee, X.J., Tong, H.Q., Deng, Y.F., Zhao, H.L.: Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution. Expert Syst. Appl. 41(4), 1915–1927 (2014)

    Article  Google Scholar 

  17. Si, G., Sun, Z., Zhang, H., Zhang, Y.: Parameter estimation and topology identification of uncertain fractional order complex networks. Commun. Nonlinear Sci. 17(12), 5158–5171 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yuan, L.G., Yang, Q.G.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. 17(1), 305–316 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Alfi, A., Modares, H.: System identification and control using adaptive particle swarm optimization. Appl. Math. Model. 35(3), 1210–1221 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tang, Y., Zhang, X., Hua, C., Li, L., Yang, Y.: Parameter identification of commensurate fractional-order chaotic system via differential evolution. Phys. Lett. A 376(4), 457–464 (2012)

    Article  MATH  Google Scholar 

  21. Parlitz, U.: Estimating model parameters from time series by autosynchronization. Phys. Rev. Lett. 76(8), 1232 (1996)

    Article  Google Scholar 

  22. Konnur, R.: Synchronization-based approach for estimating all model parameters of chaotic systems. Phys. Rev. E 67(2), 027204 (2003)

    Article  Google Scholar 

  23. Peng, H., Li, L., Yang, Y., Sun, F.: Conditions of parameter identification from time series. Phys. Rev. E 83(3), 036202 (2011)

    Article  Google Scholar 

  24. Kenndy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  25. Tao, C., Zhang, Y., Jiang, J.J.: Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm. Phys. Rev. E 76(1), 016209 (2007)

  26. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

  28. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  31. Ozkan, C., Kisi, O., Akay, B.: Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrig. Sci. 29(6), 431–441 (2011)

    Article  Google Scholar 

  32. Sarma, A.K., Rafi, K.M.: Optimal capacitor placement in radial distribution systems using artificial bee colony (ABC) algorithm. Innov. Syst. Des. Eng. 2(4), 177–185 (2011)

    Google Scholar 

  33. Yan, G., Li, C.: An effective refinement artificial bee colony optimization algorithm based on chaotic search and application for pid control tuning. J. Comput. Inf. Syst. 7(9), 3309–3316 (2011)

    MathSciNet  Google Scholar 

  34. Cuevas, E., Sención-Echauri, F., Zaldivar, D., Pérez-Cisneros, M.: Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput. 16(2), 281–296 (2012)

    Article  Google Scholar 

  35. Tien, J.P., Li, T.H.S.: Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems. Comput. Math. Appl. 64(5), 1108–1119 (2012)

    Article  Google Scholar 

  36. Gao, F., Fei, F.X., Xu, Q., Deng, Y.F., Qi, Y.B., Balasingham, I.: A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems. Appl. Math. Comput. 219(2), 552–568 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yang, D., Liu, Z., Zhou, J.: Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun. Nonlinear Sci. 19(4), 1229–1246 (2014)

    Article  MathSciNet  Google Scholar 

  38. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-based differential evolution. IEEE Trans. Evolut. Comput. 12(1), 64–79 (2008)

  39. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gao, W., Liu, S., Huang, L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Gao, W.F., Liu, S.Y., Huang, L.L.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 43(3), 1011–1024 (2013)

    Article  Google Scholar 

  42. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2888–2901 (2011)

    Article  Google Scholar 

  43. Gao, W.F., Liu, S.Y., Huang, L.L.: Enhancing artificial bee colony algorithm using more information-based search equations. Inf. Sci. 270, 112–133 (2014)

    Article  MathSciNet  Google Scholar 

  44. Alizadegan, A., Asady, B., Ahmadpour, M.: Two modified versions of artificial bee colony algorithm. Appl. Math. Comput. 225, 601–609 (2013)

    Article  MathSciNet  Google Scholar 

  45. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 IEEE Congress on Evolutionary Computation, pp. 84–88 (2000)

  46. Sheng, Z., Wang, J., Zhou, S., Zhou, B.: Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm. Chaos 24(1), 013133 (2014)

    Article  Google Scholar 

  47. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)

  48. Chen, W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fract. 36(5), 1305–1314 (2008)

  49. Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (No. 11371049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Yu, Y. & Zhang, S. A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems. Nonlinear Dyn 82, 1441–1456 (2015). https://doi.org/10.1007/s11071-015-2251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2251-6

Keywords

Navigation