Skip to main content
Log in

Nonlinear vibrations of an axially moving plate in aero-thermal environment

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear primary resonances of an axially moving plate in aero-thermal environment concerning on manufacturing background of the hot rolling are studied. The equation of motion of the plate is established using the Burger’s nonlinear plate theory. The aerodynamic force is analytically derived based on the linear potential flow theory and the assumed mode method. The effect of the temperature change of the environment is taken into account in the structural modeling. The incremental harmonic balance method is applied for nonlinear vibration analysis of the system. The effects of the axially moving speed, the flow velocity and the temperature change on the nonlinear vibration properties of the plate are discussed. From the analysis, it can be seen that the plate exhibits hardening type of nonlinearity. The first-order generalized coordinate has a resonance peak, and the second to the fourth-order generalized coordinates have the resonance trough. With the axially moving speed, the flow velocity and the temperature change increase, the resonance frequency of the plate decreases. The amplitude of the resonance increases when the temperature change increases. The resonance amplitude increases with increasing excitation amplitude. This research can be helpful for the hot rolling process design in the manufacturing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Mote, C.D.: Dynamic stability of an axially moving band. J. Frankl. Inst. 285(5), 329–346 (1968)

    Article  MATH  Google Scholar 

  2. Öz, H.R.: Current research on the vibration and stability of axially-moving materials. J. Sound Vib. 20(2), 3–13 (1988)

    MathSciNet  Google Scholar 

  3. Metrikine, A.V., Dieterman, H.A.: Instability of vibrations of a mass moving uniformly along an axially compressed beam on a viscoelastic foundation. J. Sound Vib. 201(5), 567–576 (1997)

    Article  MATH  Google Scholar 

  4. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21–30 (2000)

    Article  Google Scholar 

  5. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 91–116 (2005)

    Article  Google Scholar 

  6. Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69(1–2), 1–18 (2011)

    MathSciNet  Google Scholar 

  7. Wang, W., Li, C., Zhou, Y., Wang, H., Zhang, Y.: Nonlinear dynamic analysis for machine tool table system mounted on linear guides. Nonlinear Dyn. 94, 2033–2045 (2018)

    Article  Google Scholar 

  8. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. ASME Appl. Mech. Rev. 58, 91–116 (2005)

    Article  Google Scholar 

  9. Ding, H., Yan, Q.Y., Zu, J.W.: Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int. J. Bifurc. Chaos 24(5), 1450062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, X.D., Yang, J.H., Qian, Y.J., Zhang, W., Melnik, R.V.N.: Dynamics of a beam with both axial moving and spinning motion: an example of bi-gyroscopic continua. Eur. J. Mech. A. Solids 69, 231–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, X.D., Zhang, W., Chen, L.Q., Yao, M.H.: Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn. 67(2), 997–1006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang Y.W., Zang J., Yang T.Z., Fang B., Wen X.: Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink. Math. Probl. Eng., 2013, 348042 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Zhang, Y.W., Hou, S., Xu, K.F., Yang, T.Z., Chen, L.Q.: Forced vibration control of an axially moving beam with an attached nonlinear energy sink. Acta Mech. Solida Sin. 30(6), 674–682 (2017)

    Article  Google Scholar 

  14. Sorokin, V.S.: On the effects of damping on the dynamics of axially moving spatially periodic strings. Wave Motion 85, 165–175 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, Y.Q., Zhou, Y., Liu, S., Jiang, S.Y.: Complex stability boundaries of axially moving beams with interdependent speed and tension. Appl. Math. Model. 89(1), 208–224 (2021)

    Article  MathSciNet  Google Scholar 

  16. Mao, X.Y., Ding, H., Chen, L.Q.: Forced vibration of axially moving beam with internal resonance in the supercritical regime. Int. J. Mech. Sci. 131–132, 81–94 (2017)

    Article  Google Scholar 

  17. Ding, H., Zhu, M., Chen, L.: Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. Appl. Math. Mech. 40, 911–924 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sahoo, B.: Nonlinear dynamics of a viscoelastic beam traveling with pulsating speed, variable axial tension under two-frequency parametric excitations and internal resonance. Nonlinear Dyn. 99, 945–979 (2020)

    Article  Google Scholar 

  19. Lv, H.W., Li, L., Li, Y.H.: Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity. Appl. Math. Model. 53, 83–105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Arani, A.G., Soleymani, T.: Size-dependent vibration analysis of an axially moving sandwich beam with MR core and axially FGM faces layers in yawed supersonic airflow. Eur. J. Mech. A/Solids 77, 103792 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Y., Ding, H., Chen, L.Q.: Vibration of axially moving hyperelastic beam with finite deformation. Appl. Math. Model. 71, 269–285 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yan, T., Yang, T., Chen, L.: Direct multiscale analysis of stability of an axially moving functionally graded beam with time-dependent velocity. Acta Mech. Solida Sin. 33, 150–163 (2020)

    Article  Google Scholar 

  23. Cao, D., Gao, Y.: Free vibration of non-uniform axially functionally graded beams using the asymptotic development method. Appl. Math. Mech. 40, 85–96 (2019)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Y.F., Wang, Z.M.: Dynamic instability of axially moving viscoelastic plate. Eur. J. Mech. A. Solids 73, 1–10 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, H.Y., Li, J., Lang, T.Y., Zhu, X.: Dynamics of an axially moving unidirectional plate partially immersed in fluid under two frequency parametric excitation. Int. J. Non-Linear Mech. 99, 31–39 (2018)

    Article  Google Scholar 

  26. Ding, H., Wang, S., Zhang, Y.W.: Free and forced nonlinear vibration of a transporting belt with pulley support ends. Nonlinear Dyn. 92, 2037–2048 (2018)

    Article  Google Scholar 

  27. Yao, G., Zhang, Y., Li, C., Yang, Z.: Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment. Acta Mech. 227, 3517–3527 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yao, G., Zhang, Y.: Dynamics and stability of an axially moving plate interacting with surrounding airflow. Meccanica 51(9), 2111–2119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dugundji, J., Dowell, E.H., Perkin, B.: Subsonic flutter of panels on continuous elastic foundations. AIAA J. 5(1), 1146–1154 (1963)

    Article  Google Scholar 

  30. Weaver, D.S., Unny, T.E.: The hydroelastic stability of a flat plate. J. Appl. Mech. 37(1), 823–827 (1970)

    Article  MATH  Google Scholar 

  31. Tang, L., Païdoussis, M.P.: On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 305(1–2), 97–115 (2007)

    Article  Google Scholar 

  32. Yao, G., Li, F.: Nonlinear global resonance analysis of an embedded plate interacting with outside subsonic airflow. Commun. Nonlinear Sci. Numer. Simul. 68, 286–301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Serry, M., Tuffaha, A.: Static stability analysis of a thin plate with a fixed trailing edge in axial subsonic flow: Possio integral equation approach. Appl. Math. Model. 63, 644–659 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, T.J., Zhou, S., Yang, X.D., Zhang, W.: Global dynamics of composite panels with free-layer damping treatment in subsonic flow. Compos. Struct. 168, 247–258 (2017)

    Article  Google Scholar 

  35. Li, P., Li, Z., Dai, C., Yang, Y.: On the non-linear dynamics of a forced plate with boundary conditions correction in subsonic flow. Appl. Math. Model. 64, 15–46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, L., Yao, M., Zhang, W., Cao, D.: Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow. Appl. Math. Mech. 41, 1861–1880 (2020)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Li, F.M.: Nonlinear dynamics modeling and analysis of two rods connected by a joint with clearance. Appl. Math. Model. 39(9), 2518–2527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, F.M., Yao, G.: 1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow. Compos. Struct. 100, 249–256 (2013)

    Article  Google Scholar 

  39. Zang, J., Cao, R.Q., Zhang, Y.W., Fang, B., Chen, L.Q.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul 95, 105620 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zang, J., Cao, R.Q., Fang, B., Zhang, Y.W.: A vibratory energy harvesting absorber using integration of a lever-enhanced nonlinear energy sink and a levitation magnetoelectric energy harvester. J. Sound Vib. 484, 115534 (2020)

    Article  Google Scholar 

  41. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281(3–5), 611–626 (2005)

    Article  Google Scholar 

  42. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME J. Appl. Mech. 48(4), 959–964 (1981)

    Article  MATH  Google Scholar 

  43. Amabili, M.: Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  44. Raju, K.K., Rao, G.V.: Thermal post-buckling of a square plate resting on an elastic foundation by finite element method. Comput. Struct. 28(2), 195–199 (1988)

    Article  MATH  Google Scholar 

  45. Yao, G., Li, F.M.: Stability analysis and active control of a nonlinear composite laminated plate with piezoelectric material in subsonic airflow. J. Eng. Math. 89, 147–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hatami, S., Ronagh, H.R., Azhari, M.: Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct. 86(17–18), 1738–1746 (2008)

    Article  Google Scholar 

  47. Cheung, Y.K., Lau, S.L.: Incremental time-space finite strip method for non-linear structural vibrations. Earthq. Eng. Struct. Dyn. 10(2), 239–253 (2010)

    Article  Google Scholar 

  48. Lau, S., Cheung, Y., Wu, S.: A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. J. Appl. Mech. 49(4), 849–853 (1982)

    Article  MATH  Google Scholar 

  49. Cheung, Y.K.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (51975511), the Natural Science Foundation of Liaoning (2020-MS-092), the Fundamental Research Funds for the Central Universities (N2003023), the Key Project of Guangdong Education Department of China (2018KZDXM075) and Program for Innovative Research Team in University of Guangdong Education Department of China (2018KCXTD032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Xie, Z., Zhu, L. et al. Nonlinear vibrations of an axially moving plate in aero-thermal environment. Nonlinear Dyn 105, 2921–2933 (2021). https://doi.org/10.1007/s11071-021-06807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06807-3

Keywords

Navigation