Skip to main content
Log in

Dynamical analysis of axially moving plate by finite difference method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27, 503–517 (1991)

    Article  Google Scholar 

  2. Öz, H.R., Pakdemirli, M.: Vibrations of an axially moving beam with time dependent velocity. J. Sound Vib. 227, 239–257 (1999)

    Article  Google Scholar 

  3. Chen, L.Q., Yang, X.D.: Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models. Int. J. Solids Struct. 42, 37–50 (2005)

    Article  MATH  Google Scholar 

  4. Ravindra, B., Zhu, W.D.: Low dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch. Appl. Mech. 68, 195–205 (1998)

    Article  MATH  Google Scholar 

  5. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122, 21–30 (2000)

    Article  Google Scholar 

  6. Öz, H.R., Pakdemirli, M., Boyaci, H.: Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int. J. Non-Linear Mech. 36, 107–115 (2001)

    Article  MATH  Google Scholar 

  7. Pellicano, F., Vestroni, F.: Complex dynamic of high-speed axially moving systems. J. Sound Vib. 258, 31–44 (2002)

    Article  Google Scholar 

  8. Marynowski, K.: Non-linear dynamic analysis of an axially moving viscoelastic beam. J. Theor. Appl. Mech. 40, 465–482 (2002)

    MATH  Google Scholar 

  9. Marynowski, K., Kapitaniak, T.: Kelvin–Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web. Int. J. Non-Linear Mech. 37, 1147–1161 (2002)

    Article  MATH  Google Scholar 

  10. Marynowski, K.: Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solitons Fractals 21, 481–490 (2004)

    Article  MATH  Google Scholar 

  11. Yang, X.D., Chen, L.Q.: Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos Solitons Fractals 23, 249–258 (2005)

    Article  MATH  Google Scholar 

  12. Chen, L.Q., Yang, X.D.: Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation. Chaos Solitons Fractals 27, 748–757 (2006)

    Article  MATH  Google Scholar 

  13. Lin, C.C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34, 3179–3190 (1997)

    Article  MATH  Google Scholar 

  14. Vartik, V., Wickert, J.A.: Parametric instability of a traveling plate partially supported by a laterally moving elastic foundation. J. Vib. Acoust. 130, 051006 (2008)

    Article  Google Scholar 

  15. Kim, J., Cho, J., Lee, U., Park, S.: Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Comput. Struct. 81, 2011–2020 (2003)

    Article  Google Scholar 

  16. Shin, C.H., Kim, W.S., Chung, J.T.: Free in-plane vibration of an axially moving membrane. J. Sound Vib. 272, 137–154 (2004)

    Article  Google Scholar 

  17. Gorman, D.J.: Free in-plane vibration analysis of rectangular plates by the method of superposition. J. Sound Vib. 272, 831–851 (2004)

    Article  Google Scholar 

  18. Marynowski, K.: Two-dimensional rheological element in modelling of axially moving viscoelastic web. Eur. J. Mech. A, Solids 25, 729–744 (2005)

    Article  Google Scholar 

  19. Piovan, M.T., Sampaio, R.: Vibrations of axially moving flexible beams made of functionally graded materials. Thin-Walled Struct. 46, 112–121 (2008)

    Article  Google Scholar 

  20. Wang, X.: Numerical analysis of moving orthotropic thin plates. Comput. Struct. 70, 467–486 (1999)

    Article  MATH  Google Scholar 

  21. Laukkanen, J.: FEM analysis of a traveling web. Comput. Struct. 80, 1827–1842 (2002)

    Article  Google Scholar 

  22. Hatami, S., Ronagh, H.R., Azhari, M.: Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct. 86, 1738–1746 (2008)

    Article  Google Scholar 

  23. Zhou, Y.F., Wang, Z.M.: Vibrations of axially moving viscoelastic plate with parabolically varying thickness. J. Sound Vib. 316, 198–210 (2008)

    Article  Google Scholar 

  24. Chen, L.Q., Ding, H.: Steady-state responses of axially accelerating viscoelastic beams: Approximate analysis and numerical confirmation. Sci. China Ser. G 51, 1707–1721 (2008)

    Article  Google Scholar 

  25. Ding, H., Chen, L.Q.: Stability of axially accelerating viscoelastic beams: multi-scale analysis with numerical confirmations. Eur. J. Mech. A, Solids 27, 1108–1120 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Luo, A.C.J., Hamidzaheh, H.R.: Equilibrium and buckling stability for axially traveling plates. Commun. Nonlinear Sci. Numer. Simul. 9, 343–360 (2004)

    Article  MATH  Google Scholar 

  27. Čepon, G., Boltežar, M.: Computing the dynamic response of an axially moving continuum. J. Sound Vib. 300, 316–329 (2007)

    Article  Google Scholar 

  28. Park, S.W.: Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38, 8065–8092 (2001)

    Article  MATH  Google Scholar 

  29. Yang, X.D., Chen, L.Q., Zu, J.W.: Vibrations and stability of an axially moving rectangular composite plate. J. Appl. Mech. 78, 011018 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XD., Zhang, W., Chen, LQ. et al. Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn 67, 997–1006 (2012). https://doi.org/10.1007/s11071-011-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0042-2

Keywords

Navigation