Skip to main content
Log in

Nonlinear dynamics of a viscoelastic beam traveling with pulsating speed, variable axial tension under two-frequency parametric excitations and internal resonance

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates nonlinear combined parametric transverse vibrations of a traveling viscoelastic beam. The combined parametric excitations originate from the time dependency of axial velocity as well as axial tension. Two parametric excitations are enforced into the system amid the internal resonance. Two-frequency parametric resonance is assumed to be comprised of combination parametric resonance of first two modes due to the time dependency of axial velocity, and the principal parametric resonance of first mode due to the variable tension in the axial direction in the presence of internal resonance for viscoelastic beam is considered for the first time. The higher-order integro-partial differential equation of motion is solved through direct method of multiple scales. Continuation algorithm is employed to explore the stability and various bifurcations of the nonlinear dynamic system. Focus has been made to study the effect of variations of fluctuating tension component, fluctuating velocity component independently and when combined, internal and parametric frequency detuning parameters and damping on the system response. Frequency response equilibrium curves are complex and unique in shapes which are embodied with various bifurcations. Such steady-state behavior is not seen in the existent literature. With variation in fluctuating velocity component, the number of steady-state nontrivial equilibrium curves increases to three and with variation in fluctuating axial tension, they become four. In this process, significant changes in stability, number and position of various bifurcations like supercritical and subcritical pitchfork, Hopf and saddle node are observed. Unlike the previous study, the shape, stability and bifurcations of equilibrium curves under the combined effect of axial velocity and tension closely match with the case of fluctuating axial tension component. The effect of variation in internal and parametric frequency detuning parameter is more realized for second mode compared to first mode. A comparison of the present work with a previous one where axial tension is variable reveals many qualitative and quantitative similarities and dissimilarities. But when compared with earlier work where axial velocity is constant, significant dissimilarities are surfaced. The system displays a wide ranging dynamic behavior including stable periodic, quasiperiodic and unstable chaotic behavior. The numerical computation depicts various nonlinear characteristics and oscillatory behaviors which are not found so far in the existent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Oz, H.R., Pakdemirli, M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227(2), 239–257 (1999)

    Google Scholar 

  2. Parker, R.G., Lin, Y.: Parametric instability of axially moving media subjected to multi-frequency tension and speed fluctuations. ASME J. Appl. Mech. 68(1), 49–57 (2001)

    MATH  Google Scholar 

  3. Yang, X.D., Tang, Y.Q., Chen, L.Q., Lim, C.W.: Dynamic stability of axially accelerating Timoshenko beams: averaging method. Eur. J. Mech. A/Solids 29, 81–90 (2010)

    MathSciNet  Google Scholar 

  4. Ba ğdatli, S.M., Uslu, B.: Free vibration analysis of axially moving beam under non-ideal conditions. Struct. Eng. Mech. 54(3), 597 (2015)

    Google Scholar 

  5. Ding, H., Chen, L,Q.: Stability of axially accelerating viscoelastic beams: multi-scale analysis with numerical confirmations. Eur. J. Mech. A/Solids 27, 1108–1120 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Saksa, T., Jeronen, J.: Dynamic analysis for axially moving viscoelastic Poynting–Thomson beams. Math. Model Optim. Complex Struct. 40, 131–151 (2016)

    MathSciNet  Google Scholar 

  7. Oz, H.R., Pakdemirli, M., Boyaci, H.: Non-linear vibrations and stability of anaxially moving beam with time-dependent velocity. J. Non-Linear Mech. 36, 107–115 (2001)

    MATH  Google Scholar 

  8. Ding, H., Chen, L.Q.: Nonlinear dynamics of axially accelerating viscoelastic beams based on differential quadrature. Acta Mech. Solida Sin. 22, 267–275 (2009)

    Google Scholar 

  9. Chen, L.H., Zhang, W., Yang, F.H.: Nonlinear dynamics of higher dimensional system for an axially accelerating viscoelastic beam. J. Sound Vib. 329, 5321–5345 (2010)

    Google Scholar 

  10. Ghayesh, M.H., Balar, S.: Nonlinear parametric vibration and stability analysis for two dynamic modes of axially moving Timoshenko beams. Appl. Math. Model. 34, 2850–2859 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Chen, L.Q., Ding, H., Lim, C.W.: Principal parametric resonance of axially accelerating viscoelastic beams: multi-scale analysis and differential quadrature verification. Shock Vib. 19(4), 527–543 (2012)

    Google Scholar 

  12. Wang, Y.B., Ding, H., Chen, L.Q.: Nonlinear vibration axially accelerating hyperelastic beams. Int. J. Non-Linear Mech. 99, 302–310 (2018)

    Google Scholar 

  13. Tang, Y.Q., Luo, E.B., Yang, X.D.: Complex modes and traveling waves in axially moving Timoshenko beams. Appl. Math. Mech. Engl. Ed. 39(4), 597–608 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Wang, B.: Effect of rotary inertia on stability of axially accelerating viscoelastic Rayleigh beams. Appl. Math. Mech. Engl. Ed. 39(5), 717–732 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Mao, X.Y., Ding, H., Chen, L.Q.: Parametric resonance of a translating beam with pulsating axial speed in the supercritical regime. Mech. Res. Commun. 76, 72–77 (2016)

    Google Scholar 

  16. Mao, X.Y., Ding, H., Chen, L.Q.: Dynamics of a super critically axially moving beam with parametric and forced resonance. Nonlinear Dyn. 89(2), 1475–1487 (2017)

    Google Scholar 

  17. Zhu, W.D., Chen, Y.: Theoretical and experimental investigation of elevator cable dynamics and control. ASME J. Vib. Acoust. 128(1), 66–78 (2005)

    Google Scholar 

  18. Zhu, H., Hu, Y.M., Zhu, W.D.: Dynamic response of a front end accessory drive system and parameter optimization for vibration reduction via a genetic algorithm. J. Vib. Control 24(11), 2201–2220 (2018)

    MathSciNet  Google Scholar 

  19. Mokhtari, A., Mirdamadi, H.R.: Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: non-transforming spectral element analysis. Appl. Math. Model. 56, 342–358 (2018)

    MathSciNet  Google Scholar 

  20. Ding, H., Wang, S., Zhang, Y.W.: Free and forced nonlinear vibration of a transporting belt with pulley support ends. Nonlinear Dyn. 92, 2037–2048 (2018)

    Google Scholar 

  21. Ding, H., Lim, C.W., Chen, L.Q.: Nonlinear vibration of a traveling belt with non-homogeneous boundaries. J. Sound Vib. 424, 78–93 (2018)

    Google Scholar 

  22. Hu, Y., Rong, Y.: Primary parametric resonance of an axially accelerating beam subjected to static loads. J. Theor. Appl. Mech. 56(3), 815–828 (2018)

    Google Scholar 

  23. Dehadrai, A.R., Sharma, I., Gupta, S.S.: Stability of vertically traveling, pre-tensioned, heavy cables. J. Comput. Nonlinear Dyn. 13(081003), 1–9 (2018)

    Google Scholar 

  24. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  25. Riedel, C.H., Tan, C.A.: Coupled, forced response of an axially moving strip with internal resonance. Int. J. Nonlinear Mech. 37, 101–116 (2002)

    MATH  Google Scholar 

  26. Chen, S.H., Huang, J.L., Sze, K.Y.: Multidimensional Lindstedt–Poincare method for nonlinear vibration of axially moving beams. J. Sound Vib. 306, 1–11 (2007)

    Google Scholar 

  27. Ozkaya, E., Bagdatli, S.M., Oz, H.R.: Nonlinear transverse vibrations and 3:1 internal resonances of a beam with multiple supports. J. Vib. Acoust. 130(2), 1–11 (2008)

    Google Scholar 

  28. Bagdatli, S.M., Oz, H.R., Ozkaya, E.: Nonlinear transverse vibrations and 3:1 internal resonances of a tensioned beam on multiple supports. Math. Comput. Appl. 16(1), 203–215 (2011)

    MathSciNet  Google Scholar 

  29. Ozhan, B.B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: primary resonance case. J. Sound Vib. 325, 894–906 (2009)

    Google Scholar 

  30. Ozhan, B.B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a system with cubic nonlinearities: three-to-one internal resonances with external excitation. J. Sound Vib. 329, 2603–2615 (2010)

    Google Scholar 

  31. Huang, J.L., Su, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330, 471–485 (2011)

    Google Scholar 

  32. Ghayesh, M.H., Kafiabad, H.A., Reid, T.: Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49, 227–243 (2012)

    Google Scholar 

  33. Zhang, D.B., Tang, Y.Q., Ding, H., Chen, L.Q.: Parametric and internal resonance of a transporting plate with a varying tension. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04981-z

    Article  Google Scholar 

  34. Zhang, D.B., Tang, Y.Q., Chen, L.Q.: Irregular instability boundaries of axially accelerating viscoelastic beams with 1:3 internal resonance. Int. J. Mech. Sci. 133, 535–543 (2017)

    Google Scholar 

  35. Zhang, D.B., Tang, Y.Q., Chen, L.Q.: Internal resonance in parametric vibrations of axially accelerating viscoelastic plates. Eur. J. Mech. A. Solids 75, 142–155 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Mao, X.Y., Ding, H., Chen, L.Q.: Forced vibration of axially moving beam with internal resonance in the supercritical regime. Int. J. Mech. Sci. 131–132, 81–94 (2017)

    Google Scholar 

  37. Mao, X.Y., Ding, H., Chen, L.Q.: Internal resonance of a supercritically axially moving beam subjected to the pulsating speed. Nonlinear Dyn. 95(1), 631–651 (2019)

    Google Scholar 

  38. Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime. Nonlinear Dyn. 86, 795–809 (2016)

    Google Scholar 

  39. Huang, J.L., Zhu, W.D.: A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. ASME J. Vib. Acoust. 139, 021010–1 (2017)

    Google Scholar 

  40. Ding, H., Huang, L., Mao, X., Chen, L.Q.: Primary resonance of traveling viscoelastic beam under internal resonance. Appl. Math. Mech. 38(1), 1–14 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Zhu, B., Dong, Y., Li, Y.: Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance. Nonlinear Dyn. 94, 2575–2612 (2018)

    Google Scholar 

  42. Tang, Y.Q., Zhang, Y.X., Yang, X.D.: On parametric instability boundaries of axially moving beams with internal resonance. Acta Mech. Solida Sin. 31, 470 (2018)

    Google Scholar 

  43. Sahoo, B., Panda, L.N., Pohit, G.: Stability, bifurcation and chaos of a traveling viscoelastic beam tuned to 3:1 internal resonance and subjected to parametric excitation. Int. J. Bifurc. Chaos. 27(2), 1750017 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Sahoo, B., Panda, L.N., Pohit, G.: Combination, principle parametric and internal resonances of an accelerating beam under two frequency parametric excitation. Int. J. Non-Linear Mech. 78, 35–44 (2016)

    Google Scholar 

  45. Sahoo, B., Panda, L.N., Pohit, G.: Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam. Nonlinear Dyn. 82, 1721–1742 (2015)

    MathSciNet  Google Scholar 

  46. Chen, L.Q., Tang, Y.Q.: Combination and principal parametric resonances of axially accelerating viscoelastic beams: recognition of longitudinally varying tensions. J Sound Vib. 330, 5598–614 (2011)

    Google Scholar 

  47. Chen, L.Q., Tang, Y.Q.: Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. ASME J. Vib. Acoust. 134(1), 245–6 (2012)

    Google Scholar 

  48. Tang, Y.Q., Chen, L.Q., Zhang, H.J., Yang, S.P.: Stability of axially accelerating viscoelastic Timoshenko beams: recognition of longitudinally varying tensions. Mech. Mach. Theory 62, 31–50 (2013)

    Google Scholar 

  49. Tang, Y.Q., Zhang, D.B., Gao, J.M.: Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn. 83(1–2), 401–18 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Abdelhafez, H.M.: Resonance of a nonlinear forced system with two-frequency parametric and self-excitations. Math. Comput. Simul. 66, 69–83 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Ozhan, B.B.: Vibration and stability analysis of axially moving beams with variable speed and axial force. Int. Struct. Stab. Dyn. 14(6), 1450015 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Sahoo, B.: Nonlinear dynamics of a viscoelastic traveling beam with time dependent axial velocity and variable axial tension. Nonlinear Dyn. 97(1), 269–296 (2019)

    Google Scholar 

  53. Wickert, J.A.: Nonlinear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27, 503–517 (1992)

    MATH  Google Scholar 

  54. Chakraborty, G., Mallick, A.K., Hatwal, H.: Non-linear vibration of traveling beam. Int. J. Non-Linear Mech. 34, 655–670 (1999)

    MATH  Google Scholar 

  55. Chen, L.Q., Yang, X.D.: Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models. Int. J. Solids Struct. 42, 37–50 (2005)

    MATH  Google Scholar 

  56. Chakraborty, G., Mallick, A.K.: Non-linear vibration of a traveling beam having an intermediate guide. Nonlinear Dyn. 20, 247–265 (1999)

    Google Scholar 

  57. Ghayesh, M.H., Kafiabad, H.A., Amabili, M.: Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance. Mech. Mach. Theory 52, 18–34 (2012)

    Google Scholar 

  58. Yang, T., Fang, B., Chen, Y., Zhen, Y.: Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations. Int. J. Non-Linear Mech. 44, 230–238 (2009)

    Google Scholar 

  59. Ghayesh, M.H., Amabili, M., Farokhi, H.: Coupled global dynamics of an axially moving viscoelastic beam. Int. J. Non-Linear Mech. 51, 54–74 (2013)

    MATH  Google Scholar 

  60. Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonance in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20, 131–158 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamadev Sahoo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \varGamma _1= & {} -2 i\omega _1 {A}'_1 \phi _1 -2 v_0 {A}'_1 {\phi }^{{\prime }}_1 -2i\mu \omega _1 A_1 \phi _1 \\&-2i\alpha \omega _1 A_1 {\phi }^{{\prime }{\prime }{\prime }{\prime }}_1 +\frac{1}{2}v_\mathrm{l} ^{2} \left\{ 2A_1^2 \bar{{A}}_1 {\phi }^{{\prime }{\prime }}_1 \int \limits _0^1 {\phi }^{{\prime }}_1 {\bar{{\phi }}}'_1 \hbox {d}x\right. \\&+A_1^2 \bar{{A}}_1 {\bar{{\phi }}}^{{\prime }{\prime }}_1 \int \limits _0^1 {{\phi }_1^{{\prime }2}\hbox {d}x} +2A_1 A_2 \bar{{A}}_2 {\bar{{\phi }}}^{{\prime }{\prime }}_2 \int \limits _0^1 {{\phi }^{{\prime }}_1 {\phi }^{{\prime }}_2 \hbox {d}x} \\&+\left. {2A_1 A_2 \bar{{A}}_2 {\phi }^{{\prime }{\prime }}_1 \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_2 \hbox {d}x} +2A_1 A_2 \bar{{A}}_2 {\phi }^{{\prime }{\prime }}_2 \int \limits _0^1 {{\phi }^{{\prime }}_1 {\bar{{\phi }}}'_2 \hbox {d}x} } \right\} \\ \varGamma _2= & {} \frac{1}{2}v_\mathrm{l} ^{2}\left\{ {2\bar{{A}}_1 ^{2}A_2 {\bar{{\phi }}}^{{\prime }{\prime }}_1 \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_1 \hbox {d}x} +\bar{{A}}_1 ^{2}A_2 {\phi }^{{\prime }{\prime }}_2 \int \limits _0^1 \bar{\phi }^{\prime {2}}_1 \hbox {d}x} \right\} \ \\ \varGamma _3= & {} \bar{{A}}_1 \left\{ { v_1 \omega _1 \bar{{\phi }}_1 ^{\prime }-\frac{ v_1 \varOmega }{2} {\bar{{\phi }}}'_1 +i v_0 v_1 {\bar{{\phi }}}^{{\prime }{\prime }}_1 } \right\} \\ \varGamma _4= & {} \bar{{A}}_1 \left\{ {-i\frac{p_1 }{2}\bar{{\phi }}_1 ^{\prime \prime }} \right\} \ \\ \end{aligned}$$
$$\begin{aligned} \varGamma _5= & {} -2 i\omega _2 {A}'_2 \phi _2 -2 v_0 {A}'_2 {\phi }^{{\prime }}_2 -2\mu i\omega _2 A_2 \phi _2 \\&\quad -2\alpha i\omega _2 A_2 {\phi }^{{\prime }{\prime }{\prime }{\prime }}_2 +\frac{1}{2}v_\mathrm{l}^{2}\left\{ A_2^2 \bar{{A}}_2 {{\bar{{\phi }}}^{{\prime }{\prime }}}_2 \int \limits _0^1 {\phi }^{{\prime {2}}}_2 \hbox {d}x\right. \\&\quad +2A_1 \bar{{A}}_1 A_2 {\phi }^{{\prime }{\prime }}_2 \int \limits _{0}^1 {{\phi }^{{\prime }}_1 }{\bar{{\phi }}}'_1 \hbox {d}x+2A_1 \bar{{A}}_1 A_2 {\bar{{\phi }}}^{{\prime }{\prime }}_1 \int \limits _0^1 {{\phi }^{{\prime }}_1 {\phi }^{{\prime }}_2 \hbox {d}x}\\&\quad \left. {+2A_2^2 \bar{{A}}_2 {\phi }^{{\prime }{\prime }}_2 \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_2 \hbox {d}x} +2A_1 \bar{{A}}_1 A_2 {\phi }^{{\prime }{\prime }}_1 \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_1 \hbox {d}x} } \right\} \\ \varGamma _6= & {} \frac{1}{2}v_\mathrm{l} ^{2}\left\{ {A_1^3 {\phi }^{{\prime }{\prime }}_1 \int \limits _0^1 {{\phi }^{{\prime {2}}}_1\hbox {d}x} } \right\} \\ \varGamma _7= & {} A_2 \left\{ {-i\frac{p_1 }{2}\phi _2^{\prime \prime }} \right\} \\ \varGamma _8= & {} \bar{{A}}_2 \left\{ { v_1 \omega _2 {\bar{{\phi }}}'_2 -\frac{ v_1 \varOmega }{2}{\bar{{\phi }}}'_2 +i v_0 v_1 {\bar{{\phi }}}^{{\prime }{\prime }}_2 } \right\} \\ \varGamma _9= & {} A_1 \left\{ {-i\frac{p_1 }{2}\phi _1 ^{\prime \prime }} \right\} \\ S_1= & {} \frac{\frac{1}{16}v_\mathrm{l} ^{2}\left\{ {2\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_1 {\bar{{\phi }}}'_1 \hbox {d}x} +\int \limits _0^1 {{\bar{{\phi }}}^{{\prime }{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime {2}}}_1 \hbox {d}x} } \right\} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} +v_0 \int \limits _0^1{{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} }\\ \end{aligned}$$
$$\begin{aligned} S_2= & {} \frac{\frac{1}{8}v_\mathrm{l}^{2}\left\{ {\int \limits _0^1 {{\bar{{\phi }}}^{{\prime }{\prime }}_2 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_1 {\phi }^{{\prime }}_2 \hbox {d}x} +\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_2 \hbox {d}x} +\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_2 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_1 {\bar{{\phi }}}'_2 \hbox {d}x} } \right\} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} + v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} } \\ S_3= & {} \frac{\frac{1}{8}v_\mathrm{l} ^{2}\left\{ {\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_1 {\bar{{\phi }}}'_1 \hbox {d}x} +\int \limits _0^1 {{\bar{{\phi }}}^{{\prime }{\prime }}_1 \bar{{\phi }}_2 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_1 {\phi }^{{\prime }}_2 \hbox {d}x} +\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_1 \bar{{\phi }}_2 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_2 \hbox {d}x} } \right\} }{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} + v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \\ S_4= & {} \frac{\frac{1}{16}v_\mathrm{l} ^{2}\left\{ {2\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_2 \hbox {d}x} +\int \limits _0^1 {{\bar{{\phi }}}^{{\prime }{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime {2}}}_2 \hbox {d}x} } \right\} }{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} + v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \ \\ C_1= & {} \frac{-i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} + v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} } \\ C_2= & {} \frac{-i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} }{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \\ e_1= & {} \frac{-i\omega _1 \int \limits _0^1 {\phi }^{{\prime }{\prime }{\prime }{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x}{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} } \ \\ e_2= & {} \frac{-i\omega _2 \int \limits _0^1 {\phi }^{{\prime }{\prime }{\prime }{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x}{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \\ \end{aligned}$$
$$\begin{aligned} g_1= & {} \frac{\frac{1}{16}v_\mathrm{l} ^{2}\left\{ {2\int \limits _0^1 {{\bar{{\phi }}}^{{\prime }{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime }}_2 {\bar{{\phi }}}'_1 \hbox {d}x} +\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_2 \bar{{\phi }}_1 \hbox {d}x} \int \limits _0^1 {{\bar{{\phi }}}^{{\prime }2}_1 \hbox {d}x} } \right\} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} }\right\} } \\ g_2= & {} \frac{\frac{1}{16}v_\mathrm{l} ^{2}\left\{ {\int \limits _0^1 {{\phi }^{{\prime }{\prime }}_1 \bar{{\phi }}_2 \hbox {d}x} \int \limits _0^1 {{\phi }^{{\prime {2}}}_1 \hbox {d}x} } \right\} }{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \ \\ K_4= & {} \frac{\frac{1}{2}\left\{ {v_1 \omega _2 \int \limits _0^1 {{\bar{{\phi }}}'_2 \bar{{\phi }}_1 \hbox {d}x} -\frac{v_1 \varOmega }{2}\int \limits _0^1 {\bar{{\phi }}_2 ^{\prime }} \bar{{\phi }}_1 \hbox {d}x+i v_0 v_1 \int \limits _0^1 {{\bar{{\phi }}}^{{\prime }{\prime }}_2 \bar{{\phi }}_1 \hbox {d}x} } \right\} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} } \\ K_5= & {} \frac{\frac{1}{2}\left\{ {v_1 \omega _1 \int \limits _0^1 {{\bar{{\phi }}}'_1 \bar{{\phi }}_2 \hbox {d}x} -\frac{v_1 \varOmega }{2}\int \limits _0^1 {{\bar{{\phi }}}'_1 \ } \bar{{\phi }}_2 \hbox {d}x+i v_0 v_1 \int \limits _0^1 {\bar{{\phi }}_1 ^{\prime \prime }\bar{{\phi }}_2 \hbox {d}x} } \right\} }{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \ \\ K_6= & {} \frac{ \frac{1}{2}\left\{ {-i\frac{p_1 }{2}\int \limits _0^1 {\bar{{\phi }}_1 ^{\prime \prime }\bar{{\phi }}_1 \hbox {d}x} } \right\} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} }\\ K_7= & {} \frac{ \frac{1}{2}\left\{ {-i\frac{p_1 }{2}\int \limits _0^1 {\phi _2 ^{\prime \prime }\bar{{\phi }}_1 \hbox {d}x} } \right\} }{-\left\{ {i\omega _1 \int \limits _0^1 {\phi _1 \bar{{\phi }}_1 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_1 \bar{{\phi }}_1 \hbox {d}x} } \right\} }\\ K_8= & {} \frac{\frac{1}{2} \left\{ {-i\frac{p_1 }{2}\int \limits _0^1 {\phi _1 ^{\prime \prime }\bar{{\phi }}_2 \hbox {d}x} } \right\} }{-\left\{ {i\omega _2 \int \limits _0^1 {\phi _2 \bar{{\phi }}_2 \hbox {d}x} +v_0 \int \limits _0^1 {{\phi }^{{\prime }}_2 \bar{{\phi }}_2 \hbox {d}x} } \right\} } \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B. Nonlinear dynamics of a viscoelastic beam traveling with pulsating speed, variable axial tension under two-frequency parametric excitations and internal resonance. Nonlinear Dyn 99, 945–979 (2020). https://doi.org/10.1007/s11071-019-05264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05264-3

Keywords

Navigation