Skip to main content

Advertisement

Log in

Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work proposes on a novel continuum vibratory absorber that integrates a lever-type nonlinear energy sink (LNES) with asymmetric elastic boundary into viscoelastic Euler–Bernoulli beam condition to attenuate vibration. The steady-state response of the system is studied both numerically and analytically, and consistent results are found. In the process of studying the influences of the LNES coefficients, special attention is paid to the repetitious emergence of a closed detached response (CDR), which is firstly observed in the continuum system. It emphasizes that bifurcation of the system may take place many times. Meantime, it underscores that the amplitude-frequency response after adding the resonance absorber would diminish gradually, not abruptly. And the intimate connection between the existence of the CDR and the primary response is further investigated. The CDR could dramatically influence the peak of the resonance response and help to suppress the vibration. Furthermore, comparing with the same system coupled to the traditional NES, greater performance of the LNES is presented. It is valued that the vibration suppression scheme we proposed can play a significant role in vibration attenuation of a continuum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Li, W., Vaziri, V., Aphale, S.S., Dong, S., Wiercigroch, M.: Dynamics and frequency and voltage control of downhole oil pumping system. Mech. Syst. Signal Process. 139, 106562 (2020)

    Article  Google Scholar 

  2. Jing, X.J., Vakakis, A.F.: Exploring nonlinear benefits in engineering. Mech. Syst. Signal Process. 125, 1–3 (2019)

    Article  Google Scholar 

  3. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Phil. Trans. R. Soc. A. 376, 20170732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 366, 635–652 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, T., J.M. : Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 74, 4–8 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fu, Y., Ouyang, H., Davis, R.B.: Nonlinear structural dynamics of a new sliding-mode triboelectric energy harvester with multistability. Nonlinear Dyn. 100, 1941–1962 (2020)

    Article  Google Scholar 

  7. Ha, S.. Il., Yoon, G.H.: Numerical and experimental studies of pendulum dynamic vibration absorber for structural vibration. J. Vib. Acoust. 143, 1–9 (2021)

    Article  Google Scholar 

  8. Wang, Y., Gao, M., Ouyang, H., Li, S., He, Q.: Modelling, simulation, and experimental verification of a pendulum-flywheel vibrational energy harvester. Smart Mater. Struct. 279, 115023 (2020)

    Article  Google Scholar 

  9. Lee, A.J., Xie, A., Inman, D.J.: Suppression of cross-well oscillations for bistable composites through potential well elimination. J. Vib. Acoust. Trans. ASME. 142, 1–11 (2020)

    Article  Google Scholar 

  10. Muhammad, LIM, C.W. : Dissipative multiresonant pillared and trampoline metamaterials with amplified local resonance bandgaps and broadband vibration attenuation. J. Vib. Acoust. Trans. ASME. 142, 061012 (2020)

    Article  Google Scholar 

  11. Ding, H., Chen, L.-Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3064–3107 (2020)

    Article  Google Scholar 

  12. Yang, K., Zhang, Y.W., Ding, H., Yang, T.Z., Li, Y., Chen, L.Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. Trans. ASME. 139, 021011 (2017)

    Article  Google Scholar 

  13. Al-shudeifat, M.A.: Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces. J. Vib. Acoust. 139, 1–5 (2017)

    Article  Google Scholar 

  14. Chen, J., Zhang, W., Yao, M., Liu, J., Sun, M.: Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Compos. Struct. 193, 180–188 (2018)

    Article  Google Scholar 

  15. Zhao, X.Y., Zhang, Y.W., Ding, H., Chen, L.Q.: Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink. Int. J. Appl. Mech. 10, 1850095 (2018)

    Article  Google Scholar 

  16. Li, W., Wierschem, N.E., Li, X., Yang, T., Brennan, M.J.: Numerical study of a single-sided vibro-impact track nonlinear energy sink considering horizontal and vertical dynamics. J. Vib. Acoust. 141, 061013 (2019)

    Article  Google Scholar 

  17. Yang, T., Hou, S., Qin, Z.-H., Ding, Q., Chen, L.-Q.: A dynamic reconfigurable nonlinear energy sink. J. Sound Vib. 494, 115629 (2020)

    Article  Google Scholar 

  18. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental developments. J. Vib. Acoust. Trans. ASME. 137, 1–7 (2015)

    Article  Google Scholar 

  19. Fang, B., Theurich, T., Krack, M., Bergman, L.A., Vakakis, A.F.: Vibration suppression and modal energy transfers in a linear beam with attached vibro-impact nonlinear energy sinks. Commun. Nonlinear Sci. Numer. Simul. 91, 10 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, T., Liu, T., Tang, Y., Hou, S., Lv, X.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97, 1937–1944 (2019)

    Article  Google Scholar 

  21. Zhang, Z., Lu, Z., Ding, H., Chen, L.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019)

    Article  Google Scholar 

  22. Zhang, Z., Zhang, Y.Z., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020)

    Article  Google Scholar 

  23. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018)

    Article  Google Scholar 

  24. Haris, A., Motato, E., Theodossiades, S., Rahnejat, H., Kelly, P., Vakakis, A., Bergman, L.A., McFarland, D.M.: A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities. Appl. Math. Model. 46, 674–690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96, 1819–1845 (2019)

    Article  MATH  Google Scholar 

  26. Mao, X.Y., Ding, H., Chen, L.Q.: Nonlinear torsional vibration absorber for flexible structures. J. Appl. Mech. Trans. ASME. 86, 021006 (2019)

    Article  Google Scholar 

  27. AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock mitigation by means of low- to high-frequency nonlinear targeted energy transfers in a large-scale structure. J. Comput. Nonlinear Dyn. 11, 021006 (2016)

    Article  Google Scholar 

  28. Gatti, G.: Uncovering inner detached resonance curves in coupled oscillators with nonlinearity. J. Sound Vib. 372, 239–254 (2016)

    Article  Google Scholar 

  29. Shen, Y.J., Li, H., Yang, S.P., Peng, M.F., Han, Y.J.: Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator. Nonlinear Dyn. 102, 1485–1497 (2020)

    Article  Google Scholar 

  30. Habib, G., Giuseppe, I., Cirillo, I.: Uncovering detached detached resonance resonance curves curves in in single-degree-of-freedom systems systems. Procedia Eng. 199, 649–656 (2017)

    Article  Google Scholar 

  31. Zang, J., Cao, R.Q., Fang, B., Zhang, Y.W.: A vibratory energy harvesting absorber using integration of a lever-enhanced nonlinear energy sink and a levitation magnetoelectric energy harvester. J. Sound Vib. 484, 115534 (2020)

    Article  Google Scholar 

  32. Zang, J., Cao, R., Zhang, Y., Fang, B., Chen, L.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 95, 10 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Herrera, C.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity. J. Sound Vib. 388, 298–314 (2017)

    Article  Google Scholar 

  34. Lu, L., Yang, X.D., Zhang, W.: Static nodes of an axially moving string with time-varying supports. J. Vib. Acoust. Trans. ASME. 142, 1–10 (2020)

    Article  Google Scholar 

  35. Qiao, G., Rahmatalla, S.: Influences of elastic supports on moving load identification of Euler-Bernoulli beams using angular velocity. J. Vib. Acoust. 143, 1–21 (2020)

    Google Scholar 

  36. Jian, T.Y., Chen, Y.L.: Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35, 912–925 (2019)

    Article  MathSciNet  Google Scholar 

  37. Chen, W., Dai, H., Jia, Q.: Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dyn. 98, 2097–2114 (2019)

    Article  MATH  Google Scholar 

  38. Liang, F., Yang, X., Zhang, W., Qian, Y.: Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J. Sound Vib. 417, 65–79 (2018)

    Article  Google Scholar 

  39. Chen, W., Wang, L.: On mechanics of functionally graded hard-magnetic soft beams on mechanics of functionally graded hard-magnetic soft beams. Int. J. Eng. Sci. 157, 103391 (2020)

    Article  MATH  Google Scholar 

  40. Zhang, Y., Hou, S., Zhong, Z., Zang, J., Teng, Y., Ni, Z., Chen, L.: Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dyn. 99, 2605–2622 (2020)

    Article  Google Scholar 

  41. Lenci, S., Clementi, F., Rega, G.: A comprehensive analysis of hardening/softening behaviour of shearable planar beams with whatever axial boundary constraint. Meccanica 51, 2589–2606 (2016)

    Article  MathSciNet  Google Scholar 

  42. Liu, M., Li, Z., Yang, X.D., Zhang, W., Lim, C.W.: Dynamic analysis of a deployable / retractable damped cantilever beam. Appl. Math. Mech. 41, 1321–1332 (2020)

    Article  MathSciNet  Google Scholar 

  43. Kuether, R.J., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.S.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)

    Article  Google Scholar 

  44. Ding, H., Ji, J., Chen, L.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019)

    Article  Google Scholar 

  45. Ding, H., Li, Y., Chen, L.Q.: Nonlinear vibration of a beam with asymmetric elastic supports. Nonlinear Dyn. 95, 2543–2554 (2019)

    Article  MATH  Google Scholar 

  46. Zang, J., Zhang, Y.W.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98, 889–906 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by the National Natural Science Foundation of China (11902203, 12022213) and Liaoning Revitalization Talents Program (XLYC1807172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, J., Cao, RQ. & Zhang, YW. Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dyn 105, 1327–1341 (2021). https://doi.org/10.1007/s11071-021-06625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06625-7

Keywords

Navigation