Skip to main content
Log in

Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A lumped parameter transverse vibration model of a composite plate harvester is analyzed via harmonic balance approaches. The harvester is mainly composed of a piezoelectric circular composite clamped by two steel rings and a proof mass on the plate. The lumped parameter model is a 1.5 degree-of-freedom strongly nonlinear system with a higher order polynomial stiffness. A harmonic balance approach is developed to analyze the system, and the resulting algebraic equations are numerically solved by adopting an arc-length continuation technique. An incremental harmonic balance approach is also developed for the lumped parameter model. The two approaches yield the same results. The amplitude-frequency responses produced by the harmonic balance approach are validated by the numerical integrations and the experimental data. The investigation reveals that there coexist hardening and softening characteristics in the amplitude-frequency response curves under sufficiently large excitations. The harvester with the coexistence of hardening and softening nonlinearities can outperform not only linear energy harvesters, but also typical hardening nonlinear energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thomson, G., Lai, Z., Val, D.V., et al.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)

    Article  Google Scholar 

  2. Joseph, V.G., Hao, G., Pakrashi, V.: Extreme value estimates using vibration energy harvesting. J. Sound Vib. 437, 29–39 (2018)

    Article  Google Scholar 

  3. Lin, Z.Q., Gea, H.C., Liu, S.T.: Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Acta Mech. Sin. 27(5), 730–737 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tang, L.H., Yang, Y.W., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)

    Article  Google Scholar 

  5. Fang, F., Xia, G., Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34(3), 561–577 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zou, H.X., Zhang, W.M., Wei, K.X., et al.: A compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms. ASME J. Appl. Mech. 82(12), 121005 (2016)

    Article  Google Scholar 

  7. Stanton, S.C., Mcgehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)

    Article  Google Scholar 

  8. Tang, L.H., Yang, Y.W.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101(9), 094102 (2012)

    Article  Google Scholar 

  9. Su, W.J., Zu, J.: An innovative tri-directional broadband piezoelectric energy harvester. Appl. Phys. Lett. 103(20), 203901 (2013)

    Article  Google Scholar 

  10. Zhou, S.X., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  Google Scholar 

  11. Jiang, W.A., Chen, L.Q.: Snap-through piezoelectric energy harvesting. J. Sound Vib. 333(18), 4314–4325 (2014)

    Article  Google Scholar 

  12. Cao, J.Y., Zhou, S.X., Wang, W., et al.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106(17), 173903 (2015)

    Article  Google Scholar 

  13. Leadenham, S., Erturk, A.: M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. J. Sound Vib. 333(23), 6209–6223 (2014)

    Article  Google Scholar 

  14. Wu, H., Tang, L.H., Yang, Y.W., et al.: Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 25(14), 1875–1889 (2014)

    Article  Google Scholar 

  15. Yang, Z.B., Zu, J.: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energy Convers. Manag. 88, 829–833 (2014)

    Article  Google Scholar 

  16. Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. ASME J. Appl. Mech. 82(3), 031004 (2015)

    Article  Google Scholar 

  17. Chen, L.Q., Jiang, W.A.: A piezoelectric energy harvester based on internal resonance. Acta Mech. Sin. 31(2), 223–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, L.Q., Jiang, W.A., Panyam, M., et al.: A broadband internally resonant vibratory energy harvester. ASME J. Vib. Acoust. 138(6), 061007 (2016)

    Article  Google Scholar 

  19. Tvedt, L.G.W., Nguyen, D.S., Halvorsen, E.: Nonlinear behavior of an electrostatic energy harvester under wide and narrowband excitation. J. Micromech. Microeng. 19(2), 305–315 (2010)

    Article  Google Scholar 

  20. Elvin, N., Erturk, A.: Advances in Energy Harvesting Methods. Springer, New York (2013)

    Book  Google Scholar 

  21. Amini, Y., Heshmati, M., Fatehi, P., et al.: Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads. Appl. Math. Model. 49, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sun, C.L., Lam, K.H., Chan, H.L.W., et al.: A novel drum piezoelectric-actuator. Appl. Phys. A 84(4), 385–389 (2006)

    Article  Google Scholar 

  23. Wang, W., Huang, R.J., Huang, C.J., et al.: Energy harvester array using piezoelectric circular diaphragm for rail vibration. Acta Mech. Sin. 30(6), 884–888 (2014)

    Article  Google Scholar 

  24. Yuan, J.B., Xie, T., Chen, W.S., et al.: Performance of a drum transducer for scavenging vibration energy. J. Intell. Mater. Syst. Struct. 20(14), 1771–1777 (2009)

    Article  Google Scholar 

  25. Wang, S., Lam, K.H., Sun, C.L., et al.: Energy harvesting with piezoelectric drum transducer. Appl. Phys. Lett. 90(11), 113506 (2007)

    Article  Google Scholar 

  26. Kim, S.W., Clark, W.W., Wang, Q.M.: Piezoelectric energy harvesting with a clamped circular plate: analysis. J. Intell. Mater. Syst. Struct. 16(10), 847–854 (2005)

    Article  Google Scholar 

  27. Kim, S.W., Clark, W.W., Wang, Q.M.: Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16(10), 855–863 (2005)

    Article  Google Scholar 

  28. Chen, X.R., Yang, T.Q., Wang, W., et al.: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38(1), S271–S274 (2012)

    Article  Google Scholar 

  29. Zhao, X., Yang, T.Q., Dong, Y., et al.: Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Appl. Phys. Lett. 104(22), 223904 (2014)

    Article  Google Scholar 

  30. Yang, Y.W., Wang, S.A., Stein, P., et al.: Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters. Smart Mater. Struct. 26, 045011 (2017)

    Article  Google Scholar 

  31. Xue, H., Hu, H.P.: Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. IEEE Trans. Ultrason. Ferroelectr. Freq. 55(9), 2092–2096 (2008)

    Article  MathSciNet  Google Scholar 

  32. Hedrih, K.R., Simonovic, J.D.: Non-linear dynamics of the sandwich double circular plate system. Int. J. Nonlinear Mech. 45, 902–918 (2010)

    Article  Google Scholar 

  33. Yuan, T.C., Yang, J., Chen, L.Q.: Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations. Nonlinear Dyn. 90, 2495–2506 (2017)

    Article  Google Scholar 

  34. Yuan, T.C., Yang, J., Chen, L.Q.: Nonlinear dynamic of a circular piezoelectric plate for vibratory energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 59, 651–656 (2018)

    Article  MathSciNet  Google Scholar 

  35. Saadatmand, M., Shooshtari, A.: Nonlinear vibration analysis of a circular micro-plate in two-sided NEMS/MEMS capacitive system by using harmonic balance method. Acta Mech. Sin. 35, 129–143 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhou, S.X., Cao, J.Y., Inman, D.J., et al.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)

    Article  Google Scholar 

  37. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic nonlinearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  38. Huang, J.L., Zhu, W.D.: A New incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. ASME J. Vib. Acoust. 139(2), 021010 (2017)

    Article  Google Scholar 

  39. Gadella, M., Giacomini, H., Lara, L.P.: Periodic analytic approximate solutions for the Mathieu equation. Appl. Math. Comput. 271, 436–445 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Zhou, J.X., Zhang, L.: Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f. non-linear wheel shimmy system with combined Coulomb and quadratic damping. J. Sound. Vib. 279(1), 403–416 (2005)

    Article  Google Scholar 

  41. Wang, X.F., Zhu, W.D.: A modified incremental harmonic balance method based on the fast Fourier transform and Broyden’s method. Nonlinear Dyn. 81(1–2), 981–989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lacarbonara, W.: Nonlinear Structural Mechanics Theory, Dynamical Phenomena and Modeling. Springer, New York (2013)

    MATH  Google Scholar 

  43. Yuan, T.C., Yang, J., Chen, L.Q.: A harmonic balance approach with alternating frequency/time domain progress for piezoelectric mechanical systems. Mech. Syst. Signal Process. 120, 274–289 (2019)

    Article  Google Scholar 

  44. Hsu, C.S.: On approximating a general linear periodic system. J. Math. Anal. Appl. 45, 234–251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ferri, A.A.: On the equivalence of the incremental harmonic balance method and the harmonic balance Newton Raphson method. ASME J. Appl. Mech. 53(2), 455–456 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 51575334 and 11802170), the State Key Program of National Natural Science Foundation of China (Grant 11232009), the Key Research Projects of Shanghai Science and Technology Commission (Grant 18010500100), and the Innovation Program of Shanghai Municipal Education Commission (Grant 2017-01-07-00-09-E00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, TC., Yang, J. & Chen, LQ. Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35, 912–925 (2019). https://doi.org/10.1007/s10409-019-00863-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00863-0

Keywords

Navigation