Skip to main content
Log in

Characterizing mixed-mode oscillations shaped by canard and bifurcation structure in a three-dimensional cardiac cell model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates mixed-mode oscillations (MMOs) with a three-dimensional conductance-based cardiac action potential model, which makes the heart beat in a nonrenewable way. The 3D model was entailed by utilizing voltage-dependent timescales to describe the mechanism in which MMOs are generated. As expected, motivated by geometric singular perturbation theory, our analysis explains in detail the geometric mechanisms that there is a range of parameters under which the cardiac model highlights that the presence of MMOs is induced by the intrinsical canard phenomenon. Much is currently known about the geometric mechanisms, for a folded saddle, the two singular canards perturb to maximal canards. Characteristics of the stimulus current such as frequency and duration determine which early afterdepolarizations (EADs), as a special case of MMOs bears, as well as the article compares the detailed manifold structures of original and dimensionless systems with square wave pulses by setting the pacing cycle length. An exceedingly vital technique of the analysis is the slow–fast dynamics analysis by which the system governs multiple timescale structures analytically. A more novel and successful multiple-timescale approach divides the system so that there is only one fast variable and demonstrates that the MMOs arise from canard dynamics, such as using a three-variable model in which two variables are treated as “slow” and one treated as “fast”, which the layer problem and the reduced problem are considered to explain the trajectory on the critical manifold. Meanwhile, if one variable was regarded as the single slow variable, substantial bifurcation properties are discovered for slow–fast system, as well as general one-parameter bifurcation type is discussed for the whole system similarly. By focusing on the first Lyapunov coefficient of the Hopf bifurcation, which decides whether the bifurcation is supercritical or subcritical, it was shown that an unstable limit cycle can arise via a delayed subcritical Hopf bifurcation for the original system. Meanwhile, the dynamical studies of cardiac model have major implications for further elaborating the complex dynamic behaviors, such as EADs, which can lead to tissue-level arrhythmias. Ultimately, it has turned these researches into a considerable player in the signal and information transmission for underlying nervous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maselko, J.: Experimental study of the bifurcation diagram in the Belousov-Zhabotinskii reaction. React. Kinet. Cat. Lett. 15(2), 197–201 (1980)

    Article  Google Scholar 

  2. Petrov, V., Scott, S.K., Showalter, K.: Mixed-mode oscillations in chemical systems. J. Chem. Phys. 97, 6191–6198 (1992)

    Article  Google Scholar 

  3. Klink, R.M., Alonso, A.: Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J. Neurophysiol. 70, 128–143 (1993)

    Article  Google Scholar 

  4. Koper, M.T.M.: Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram. Physica D 80, 72–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Milik, A., Szmolyan, P., Loeffelmann, H., Groeller, E.: Geometry of mixed-mode oscillations in the 3-D autocatalator. Int. J. Bifurc. Chaos 8, 505–519 (1998)

    Article  MATH  Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  7. Rubin, J., Wechselberger, M.: Giant squidhidden canard: the 3D geometry of the Hodgkin-Huxley model. Biol. Cybern. 97, 5–32 (2007)

    Article  MATH  Google Scholar 

  8. Rubin, J., Wechselberger, M.: The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos 18(1), 015105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desroches, M., Krauskopf, B., Osinga, H.M.: Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. Chaos 18, 015107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krupa, M., Jonathan, D.T.: Complex oscillations in the delayed FitzHugh-Nagumo equation. J. Nonlinear Sci. 26, 43–81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damiano, B.P., Rosen, M.R.: Effects of pacingon triggered activity induced by early afterdepolarizations. Circulation 69, 1013–1025 (1984)

    Article  Google Scholar 

  12. Marban, E., Robinson, S.W., Wier, W.G.: Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest. 78, 1185–1192 (1986)

    Article  Google Scholar 

  13. Roshni, V.M., Xie, Y.F., Antonios, P., Alan, G., Qu, Z.L., James, N.W., Riccardo, O.: Shaping a new \(Ca^{2+}\) conductance to suppress early afterdepolarizations in cardiac myocytes. J. Physiol. 24, 6081–6092 (2011)

    Google Scholar 

  14. Daisuke, S., Xie, L.H., Nguyen, T.P., Weiss, J.N., Qu, Z.L.: Irregularly appearing early afterdepolarizations in cardiac myocytes: random fluctuations or dynamical chaos? Biophys. J. 99(3), 765–773 (2010)

    Article  Google Scholar 

  15. Xie, L.H., Chen, F.H., Hrayr, S.K., James, N.W.: Oxidative stress-induced afterdepolarizations and calmodulin kinase II signaling. Cell. Biol. 104, 79–86 (2009)

    Google Scholar 

  16. Marcus, L.K., Mark, L.R., Robert, F.G.: Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am. J. Physiol. Heart. C. 275(5), 1635–1642 (1998)

    Article  Google Scholar 

  17. Vo, T., Bertram, R.: Why pacing frequency affects the production of early afterdepolarizations in cardiomyocytes: an explanation revealed by slow-fast analysis of a minimal model. Phys. Rev. E 99, 052205 (2019)

    Article  Google Scholar 

  18. Slepukhina, E., Ryashko, L., Kügler, P.: Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model. Chaos Solitons Fractals 131, 109515 (2019)

    Article  Google Scholar 

  19. Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ. Res. 74, 1097–1113 (1994)

  20. Zeng, J., Rudy, Y.: Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys. J. 68, 949–964 (1995)

    Article  Google Scholar 

  21. Tran, D.X., Sato, D., Yochelis, A., Weiss, J.N., Garfinkel, A., Qu, Z.: Bifurcation and chaos in a model of cardiac early afterdepolarizations. Phys. Rev. Lett. 102, 258103 (2009)

    Article  Google Scholar 

  22. Kurata, Y., Tsumoto, K., Hayashi, K., Hisatome, I., Tanida, M., Kuda, Y., Shibamoto, T.: Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models. Am. J. Physiol. 312, H106 (2017)

    Google Scholar 

  23. Jalics, J., Krupa, M., Rotstein, H.G.: Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dyn. Syst. 25, 445–482 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Desroches, M., Guckenheimer, J., Krauskopf, B.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Benoit, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Wechselberger, M.: Existence and bifurcation of canards in \(R^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Larter, R., Steinmetz, C.G.: Chaos via mixed-mode oscillations. Phil. Trans. R. Soc. Lond. A 337, 291–298 (1991)

    Article  MATH  Google Scholar 

  30. Jones, C.K.R.T.: Geometric Singular Perturbation Theory in Dynamical Systems (Montecatini Terme, 1994). Springer, New York (1995)

    Google Scholar 

  31. Goryachev, A., Strizhak, P., Kapral, R.: Slow manifold structure and the emergence of mixed-mode oscillations. J. Chem. Phys. 107, 2881–2889 (1997)

    Article  Google Scholar 

  32. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krupa, M., Popović, N., Kopell, N., Rotstein, H.G.: Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18, 015106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krupa, M., Popović, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7, 361–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ermentrout, B., Wechselberger, M.: Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst. 8, 253–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Desroches, M., Krauskopf, B., Osinga, H.M.: The geometry of slow manifolds near a folded node. SIAM J. Appl. Dyn. Syst. 7, 1131–1162 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248, 2841–2888 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vo, T., Bertram, R., Tabak, J., Wechselberger, M.: Mixed-mode oscillations as a mechanism for pseudo-plateau bursting. J. Comput. Neurosci. 28, 443–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vo, T., Bertram, R., Wechselberger, M.: Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting. SIAM J. Appl. Dyn. Syst. 12(2), 789–830 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rinzel, J., Lee, Y.S.: Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25(6), 653–675 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Larter, R., Steinmetz, C.G., Aguda, B.: Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction. J. Chem. Phys. 89, 6506–6514 (1988)

    Article  Google Scholar 

  43. Braaksma, B.: Singular Hopf bifurcation in systems with fast and slow variables. J. Nonlinear Sci. 8, 457–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17, 805–822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations II. SIAM J. Appl. Math. 52, 1651–1664 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Krupa, M., Ambrosio, B., Aziz-Alaoui, M.A.: Weakly coupled two-slow-two-fast systems, folded singularities and mixed mode oscillations. Nonlinearity 27, 1555–1574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lu, B., Liu, S., Liu, X., Jiang, X., Wang, X.: Bifurcation and spike adding transition in Chay-Keizer model. Int. J. Bifurc. Chaos 26(5), 1650090 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, J., Lu, B., Liu, S., Jiang, X.: Bursting types and bifurcation analysis in the Pre-Bötzinger complex respiratory rhythm neuron. Int. J. Bifurc. Chaos 27(01), 231–245 (2017)

    Article  MATH  Google Scholar 

  49. Zhan, F., Liu, S., Zhang, X., Wang, J., Lu, B.: Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dyn. 94(2), 807–826 (2018)

    Article  Google Scholar 

  50. Mondal, A., Upadhyay, R.K., Ma, J., Yadav, B.K., Sharma, S.K., Mondal, A.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13(4), 393–407 (2019)

    Article  Google Scholar 

  51. Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Izhikevich, E.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  53. Liu, Y., Liu, S.: Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model. Nonlinear Dyn. 101(1), 531–567 (2020)

    Article  Google Scholar 

  54. Guckenheimer, J., Warrick, R.H., Peck, J., Willms, A.R.: Bifurcation, bursting, and spike frequency adaptation. J. Comput. Neurosci. 4, 257–277 (1997)

    Article  MATH  Google Scholar 

  55. Desroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23, 046106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Vo, T., Tabak, J., Bertram, R., Wechselberger, M.: A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. J. Comput. Neurosci. 36(2), 259–278 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Oseledec, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)

  58. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  59. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    Book  MATH  Google Scholar 

  60. Liu, L., Zhou, T.Y., Long, G.D., Jiang, J., Zhang, C.Q.: Learning to propagate for graph meta-learning. Neural Information Processing Systems (NeurIPS) (2019)

  61. Liu, L., Zhou, T.Y., Long, G.D., Jiang, J., Zhang, C.Q.: Prototype propagation networks (PPN) for weakly-supervised few-shot learning on category graph. In: International Joint Conferences on Articial Intelligence (IJCAI) (2019)

  62. Liu, L., Zhou, T.Y., Long, G.D., Jiang, J., Zhang, C.Q.: Attribute propagation network for graph zero-shot learning. In: AAAI Conference on Articial Intelligence (AAAI) (2020)

  63. Liu, L., Hamilton, W., Long, G.D., Jiang, J., Larochelle, H.: A universal representation transformer layer for few-shot image classication. In: International Conference on Learning Representations (ICLR) (2021)

  64. Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

  65. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Mishchenko, E.F., Kolesov, Y.S., Kolesov, A.Y., Rhozov, N.K.: Asymptoticmethods in singularly perturbed systems. Monogr. Contemp. Math, New York (1994)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledges all reviewers for giving us valuable advice for the paper. We are all grateful that the support of the National Natural Science Foundation of China.

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 11872183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Shenquan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The first step, the paper rewrites the system for Eq. (1) as

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {\dot{V}}=F_1(V,f,x),\\ {\dot{f}}=F_2(V,f),\\ {\dot{x}}=F_3(V,x) \end{array}\right. \end{aligned}$$
(26)

where

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle F_1=\frac{1}{C}[-g_{Ca}d_{\infty }(V)f(V-E_{Ca})\\ \quad -g_Kx(V-E_K)+I_{\mathrm{sti}}],\\ F_2=\frac{f_{\infty }(V)-f}{\tau _{f}},\\ F_3=\frac{x_{\infty }(V)-x}{\tau _{x}} \end{array}\right. \end{aligned}$$
(27)

where \(d_\infty (V)\), \(f_\infty (V)\), \(x_\infty (V)\), \(\tau _{f}\) and \(\tau _{x}\) are detailed in Table 1.

Additionally, the Jacobian matrix can be denoted as

$$\begin{aligned} A = \left( \begin{array}{ccc} \displaystyle \frac{\partial F_1}{\partial V} &{} \displaystyle \frac{\partial F_1}{\partial f} &{} \displaystyle \frac{\partial F_1}{\partial x} \\ \displaystyle \frac{\partial F_2}{\partial V} &{} \displaystyle \frac{\partial F_2}{\partial f} &{}\displaystyle \frac{\partial F_2}{\partial x} \\ \displaystyle \frac{\partial F_3}{\partial V} &{} \displaystyle \frac{\partial F_3}{\partial f} &{}\displaystyle \frac{\partial F_3}{\partial x} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \displaystyle \frac{\partial F_1}{\partial V}= & {} \displaystyle -0.4006410258e-2f(V-100)\\&e^{(-.1602564103V-5.608974360)}/(1+e^{(-.1602564103V-5.608974360)})^2\\&-0.025f/(1+e^{(-0.1602564103V-5.608974360)})-0.046x ,\\ \frac{\partial F_1}{\partial f}= & {} \displaystyle -(0.025(V-100))/(1+e^{(-0.1602564103V-5.608974360)}),\\ \frac{\partial F_1}{\partial x}= & {} -0.046V-3.680,\\ \frac{\partial F_2}{\partial V}= & {} -0.001453488372\\&\times e^{(0.1162790698V+2.325581396)}/(1+e^{(0.1162790698V+2.325581396)})^2 ,\\ \frac{\partial F_2}{\partial f}= & {} -1/80,\\ \frac{\partial F_2}{\partial x}= & {} 0,\\ \frac{\partial F_3}{\partial V}= & {} (1/1500)\\&e^{(-(1/5)V-8)}/(1+e^{(-(1/5)V-8)})^2,\\ \frac{\partial F_3}{\partial f}= & {} 0,\\ \frac{\partial F_3}{\partial x}= & {} -1/300,\\ \end{aligned}$$

Ulteriorly, the paper calculates the equilibrium of the system for Eq. (1) at point \(H_1\) (when \(g_{K} =0.034428\)) is (\(V_0, {f_0},x_0) = (-28.896476 0.737782 0.902093)\). Meanwhile, the corresponding matrix via taking into the specific values at that point \(H_1\) is

$$\begin{aligned} A|_{H_1} = \left( \begin{array}{ccc} 0.02076226414 &{} 2.341845250 &{} -2.350762104 \\ -0.2811912152\cdot 10^{-3} &{} -1/80 &{}0 \\ 0.00005888056529&{} 0&{} -1/300 \end{array} \right) , \end{aligned}$$

which has one pair of conjugate eigenvalues \(\lambda \) and  \({\bar{\lambda }}\), where \(\lambda =iw\)\(w= 0.02321742\).

Typically, the Hopf bifurcation occurred at \(H_1\) point as shown in Fig. 9. Mathematically, set

$$\begin{aligned} q= & {} \left( \begin{array}{c} 0.99995072 \\ -0.00583631 + 0.00766909i \\ 0.00081884 - 0.00223607i \end{array} \right) , \\ p_0= & {} \left( \begin{array}{c} 0.99995072\\ -0.00583631 - 0.00766909i \\ 0.00081884 + 0.00223607i \end{array} \right) , \end{aligned}$$

which satisfy that \(Aq=iwq\), \(Ap_0=-iwp_0\), \(A^Tp'=-iwp'\),

After calculating, we obtain the following

$$\begin{aligned} \begin{array}{lll} p'=\left( \begin{array}{c} 0.00276352- 0.00754651i\\ 0.61635485 - 0.19031157i \\ -0.76408352 \end{array} \right) , \end{array} \end{aligned}$$

In order to render \(\langle p,q \rangle =1\), there is

$$\begin{aligned} \begin{array}{lll} p=\left( \begin{array}{c} -0.603956560697810 - 0.077737986299549i\\ -24.39227406 -42.35565830i \\ 12.80510500 +56.46133930i \end{array} \right) , \end{array} \end{aligned}$$

Specially note that,  \(\langle p, q \rangle ={\bar{p}}_1q_1+{\bar{p}}_2q_2+{\bar{p}}_3q_3\) is the standard scalar product in \(\mathbf{C }^3\).

To begin with the computation of first Lyapunov coefficient, the equilibrium of the original system is firstly moved to the origin of coordinate by taking the following transformation

$$\begin{aligned} \left\{ \begin{array}{l} V=\xi _1+V_0,\\ f=\xi _2+{f_{0}},\\ x=\xi _3+x_0. \end{array}\right. \end{aligned}$$
(28)

where \((V_0, f_0,x_0) = (-28.896476, 0.737782, 0.902093)\).

Through this transformation, system for Eq. (19) changes into

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \frac{\mathrm{d}\xi _1}{\mathrm{d}t}=\frac{1}{C}[-g_{Ca}d_{\infty }(\xi _1+V_0)(\xi _2+{f_{0}})(\xi _1+V_0-E_{Ca})\\ \quad -g_K(\xi _3+x_0)(\xi _1+V_0-E_K)+I_{\mathrm{sti}}]\\ \displaystyle \frac{\mathrm{d}\xi _2}{\mathrm{d}t}=\frac{f_{\infty }(\xi _1+V_0)-(\xi _2+{f_{0}})}{\tau _{f}}\\ \displaystyle \frac{\mathrm{d}\xi _3}{\mathrm{d}t}=\frac{x_{\infty }(\xi _1+V_0)-(\xi _3+x_0)}{\tau _{x}} \end{array}\right. \end{aligned}$$
(29)

This system (19) can also be expressed as

$$\begin{aligned} {\dot{x}}=Ax+F(x),~x\in \mathbf{R }^3, \end{aligned}$$
(30)

where \(A=A|_{H_1}\), \(F(x)=\displaystyle \frac{1}{2}B(x,x)+\displaystyle \frac{1}{6}C(x,x,x)+O(\Vert x\Vert ^4)\), B(xy) and C(xyz) are both symmetric and multilinear vector functions by which we pick up the planar vectors \(x=(x_1,x_2,x_3)^T\), \(y=(y_1,y_2,y_3)^T\), \(z=(z_1,z_2,z_3)^T\). Mathematically, there are

$$\begin{aligned}&B_i(x,y)=\left. \sum \limits _{j,k=1}^3\frac{\partial ^2F_i(\xi )}{\partial \xi _j \partial \xi _k}\right| _{\xi =0}x_j y_k,i=1,2,3 \end{aligned}$$
(31)
$$\begin{aligned}&C_i(x,y,z)=\left. \sum \limits _{j,k,l=1}^3\frac{\partial ^3F_i(\xi )}{\partial \xi _j \partial \xi _k \partial \xi _l}\right| _{\xi =0}x_j y_k z_l,i=1,2,3\nonumber \\ \end{aligned}$$
(32)

where \(\xi =(\xi _1,\xi _2,\xi _3)^T\).

It is not hard to calculate

$$\begin{aligned} B_1(x,y)= & {} -0.00667259x_1y_1+0.08438610x_1y_2\\&-0.046x_1y_3+0.08438610x_2y_1-0.046x_3y_1 \\ B_2(x,y)= & {} -0.1554937366\cdot 10^{-4}x_1y_1,\\ B_3(x,y)= & {} -0.9470196136\cdot 10^{-5}x_1y_1 \\ C_1(x,y,z)= & {} -0.244225714\cdot 10^{-3}x_1y_1z_1\\&-0.9044115820\cdot 10^{-2}x_1y_1z_2 \\&-0.9044115820\cdot 10^{-2}x_1y_2z_1\\&-0.9044115820\cdot 10^{-2}x_2y_1z_1, \\ C_2(x,y,z)= & {} 6.11189169\cdot 10^{-7}x_1y_1z_1, \\ C_3(x,y,z)= & {} 0.1107131062\cdot 10^{-5}x_1y_1z_1 \end{aligned}$$

Moreover, if we take \(\xi =(\xi _1,\xi _2,\xi _3)^T=\mathbf{0 }\), there are

$$\begin{aligned} B(x,y)= & {} \left( \begin{array}{c} -0.00667259x_1y_1+0.08438610(x_1y_2+x_2y_1)-0.046(x_1y_3+x_3y_1) \\ -0.1554937366\cdot 10^{-4}x_1y_1 \\ -0.9470196136\cdot 10^{-5}x_1y_1 \end{array} \right) ,\\ C(x,y,z)= & {} \left( \begin{array}{c} -0.244225714\cdot 10^{-3}x_1y_1z_1-0.9044115820\cdot 10^{-2}(x_1y_1z_2+x_1y_2z_1+x_2y_1z_1) \\ 6.11189169\cdot 10^{-7}x_1y_1z_1 \\ 0.1107131062\cdot 10^{-5}x_1y_1z_1 \end{array} \right) . \end{aligned}$$

Accordingly, we calculate

$$\begin{aligned} C(q,q,{\bar{q}})= & {} \left( \begin{array}{c} -8.585248088515901 \cdot 10^{-5} - 6.935329019316943 \cdot 10^{-5}i \\ 6.110988241\cdot 10^{-7} \\ 1.106967408 \cdot 10^{-6} \end{array} \right) . \\ \langle p,C(q,q,{\bar{q}})\rangle= & {} 5.651129809645031\cdot 10^{-5} - 1.404993804116788\cdot 10^{-6}i \\ B(q,{\bar{q}})= & {} \left( \begin{array}{c} -0.007732216224 \\ -0.1554784130\cdot 10^{-4} \\ -0.9469262867\cdot 10^{-5} \end{array} \right) . \\ A^{-1}B(q,{\bar{q}})= & {} \left( \begin{array}{c} 0.054016025185156 \\ 0.000028720763033 \\ 0.003794927089386 \end{array} \right) . \end{aligned}$$
$$\begin{aligned} \begin{array}{l} B(q,A^{-1}B(q,{\bar{q}}))\\ \quad =\left( \begin{array}{c} -0.5611810173 \cdot 10^{-3}+0.4051328738 \cdot 10^{-4}i \\ -8.398739722\cdot 10^{-7} \\ -5.118340071\cdot 10^{-7} \end{array} \right) . \end{array} \end{aligned}$$

\(\langle p,B(q,A^{-1}B(q,{\bar{q}}))\rangle = 3.497118837 \cdot 10^{-4}-7.476792938\cdot 10^{-5}i\)

$$\begin{aligned}&B(q,q)\\&\quad =\left( \begin{array}{c} -0.7732216224 \cdot 10^{-2}+0.1499973052 \cdot 10^{-2}i \\ -0.1554784130 \cdot 10^{-4} \\ -0.9469262867 \cdot 10^{-5} \end{array} \right) . \\&(2iwE-A)^{-1}B(q,q)\\&\quad =\left( \begin{array}{c} 0.155538578616271 + 0.173649101485302i \\ -0.001300959741788 + 0.000926500924901i \\ 0.000218584210219 + 0.000022390027940i \end{array} \right) . \end{aligned}$$
$$\begin{aligned}&B({\bar{q}},(2iwE-A)^{-1}B(q,q)) \\&\quad =\left( \begin{array}{c} -0.001109846259466 - 0.001290202538074i \\ -0.2418408304 \cdot 10^{-5} -0.2700001715 \cdot 10^{-5}i \\ -0.1472908265 \cdot 10^{-5} -0.1644410017 \cdot 10^{-5}i \end{array} \right) . \end{aligned}$$

\(\langle p,B({\bar{q}},(2iwE-A)^{-1}B(q,q))\rangle = 8.3224116828 \cdot 10^{-4}+ 7.1848051062 \cdot 10^{-4}i\).

The first Lyapunov coefficient is a classical index to distinguish the stability of the Hopf equilibrium, which is first applicable to the low dimensional system such as two-dimensional system. Nevertheless, for high-dimensional systems, the paper gives another expression as follows [58]:

$$\begin{aligned}&l_1(0)=\displaystyle \frac{1}{2w}\mathrm{Re}\{\langle p,C(q,q,{\bar{q}})\rangle -2\langle p,B(q,A^{-1}B(q,{\bar{q}}))\rangle \nonumber \\&\qquad +\,\langle p,B({\bar{q}},(2iwE-A)^{-1}B(q,q))\rangle \}\\&\quad =0.004077298001>0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaru, L., Shenquan, L. Characterizing mixed-mode oscillations shaped by canard and bifurcation structure in a three-dimensional cardiac cell model. Nonlinear Dyn 103, 2881–2902 (2021). https://doi.org/10.1007/s11071-021-06255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06255-z

Keywords

Navigation