Skip to main content
Log in

Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This work is motivated by the observation of remarkably slow firing in the uncoupled Hodgkin–Huxley model, depending on parameters τ h , τ n that scale the rates of change of the gating variables. After reducing the model to an appropriate nondimensionalized form featuring one fast and two slow variables, we use geometric singular perturbation theory to analyze the model’s dynamics under systematic variation of the parameters τ h , τ n , and applied current I. As expected, we find that for fixed (τ h , τ n ), the model undergoes a transition from excitable, with a stable resting equilibrium state, to oscillatory, featuring classical relaxation oscillations, as I increases. Interestingly, mixed-mode oscillations (MMO’s), featuring slow action potential generation, arise for an intermediate range of I values, if τ h or τ n is sufficiently large. Our analysis explains in detail the geometric mechanisms underlying these results, which depend crucially on the presence of two slow variables, and allows for the quantitative estimation of transitional parameter values, in the singular limit. In particular, we show that the subthreshold oscillations in the observed MMO patterns arise through a generalized canard phenomenon. Finally, we discuss the relation of results obtained in the singular limit to the behavior observed away from, but near, this limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benoıt E (1983) Systèmes lents-rapides dans R 3 et leur canards. Astérisque 109-110:159–191

    Google Scholar 

  • Brøns M, Krupa M, Wechselberger M (2006) Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst Commun 49:39–63

    Google Scholar 

  • Doi S, Inoue J, Kumagai S (2004) Chaotic spiking in the Hodgkin Huxley nerve model with slow inactivation of the sodium current. J Integr Neurosci 3:207–225

    Article  PubMed  Google Scholar 

  • Doi S, Kumagai S (2001) Nonlinear dynamics of small-scale biophysical neural networks. In: Poznanski R (ed) Biophysical neural networks: foundations of integrative neuroscience, Mary Ann Liebert Inc.

  • Doi S, Kumagai S (2005) Generation of very slow rhythms and chaos near the Hopf bifurcation in single neuron models. J Comp Neurosci 19:325–356

    Article  Google Scholar 

  • Doi S, Nabetani S, Kumagai S (2001) Complex nonlinear dynamics of the Hodgkin–Huxley equations. Biol Cybern 85:51–64

    Article  PubMed  CAS  Google Scholar 

  • Drover J, Rubin J, Su J, Ermentrout B (2004) Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J Appl Math 65:69–92

    Article  Google Scholar 

  • Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems. SIAM, Philadelphia

    Google Scholar 

  • Fenichel N (1979) Geometric singular perturbation theory. J Diff Eq 31:53–98

    Article  Google Scholar 

  • FitzHugh R (1960) Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J Gen Physiol 43:867–896

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer J, Haiduc R (2005) Canards at folded nodes. Mosc Math J 5:91–103

    Google Scholar 

  • Guckenheimer J, Harris-Warrick R, Peck J, Willms A (1997) Bifurcation, bursting, and spike frequency adaptation. J Comp Neurosci 4:257–277

    Article  CAS  Google Scholar 

  • Guckenheimer J, Oliva R (2002) Chaos in the Hodgkin–Huxley model. SIAM J Appl Dyn Sys 1:105–114

    Article  Google Scholar 

  • Guckenheimer J, Wechselberger M, Young L-S (2005) Chaotic attractors of relaxation oscillators. Nonlinearity 19:701–720

    Article  Google Scholar 

  • Guckenheimer J, Willms A (2000) Asymptotic analysis of subcritical Hopf-homoclinic bifurcation. Physica D 139:195–216

    Article  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    CAS  Google Scholar 

  • Jones C (1995) Geometric singular perturbation theory, in dynamical systems. Lecture Notes Math 1609. Springer, Heidelberg, pp 44–120

  • Milik A, Szmolyan P, Loeffelmann H, Groeller E (1998) Geometry of mixed-mode oscillations in the 3d autocatalator. Int J Bif Chaos 8:505–519

    Article  Google Scholar 

  • Moehlis J (2006) Canards for a reduction of the Hodgkin–Huxley equation. J Math Biol 52:141–153

    Article  PubMed  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc. IRE 50:2061–2070

    Article  Google Scholar 

  • Rinzel J (1985) Excitation dynamics: insights from simplified membrane models. Fed. Proc. 44:2944–2946

    PubMed  CAS  Google Scholar 

  • Rinzel J, Ermentrout B (1989) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neuronal modeling: from synapses to networks. MIT Press, Cambridge

  • Rinzel J, Miller R (1980) Numerical calculation of stable and unstable periodic solutions to the Hodgkin–Huxley equations. Math Biosci 49:27–59

    Article  Google Scholar 

  • Rubin J (2005) Surprising effects of synaptic excitation. J Comp Neurosci 18:333–342

    Article  Google Scholar 

  • Szmolyan P, Wechselberger M (2001) Canards in \({\mathbb{R}}^3\) . J Diff Eq 177: 419–453

    Article  Google Scholar 

  • Szmolyan P, Wechselberger M (2004) Relaxation oscillations in \({\mathbb{R}}^3\) . J Diff Eq 200:69–104

    Article  Google Scholar 

  • Wechselberger M (2005a) Existence and bifurcation of canards in \({\mathbb{R}}^3\) in the case of a folded node. SIAM J Appl Dyn Sys 4:101–139

    Article  Google Scholar 

  • Wechselberger M (2005b) Poincare maps for relaxation oscillations in \({\mathbb{R}}^3\) - invariant manifolds, canards and turning points. In: Proceedings of Equadiff 03, Hasselt, Belgium

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, J., Wechselberger, M. Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model. Biol Cybern 97, 5–32 (2007). https://doi.org/10.1007/s00422-007-0153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0153-5

Keywords

Navigation