Skip to main content
Log in

Towards design of a nonlinear vibration stabilizer for suppressing single-mode instability

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many mechanical systems exhibit destabilization of a single mode as some parameters are varied. In such situations, the destabilizing effect is often modeled using a negative damping term, e.g., in flow induced galloping instability of a pipe in a cross-flow. A small, nonlinear, not precisely tuned, lightly damped, secondary system mounted on the primary system can stabilize the primary system over some useful range of parameter values. We study such a system, modeling the primary system as a linear, negatively damped, single-degree-of-freedom oscillator and modeling the small secondary system using small linear damping and significantly nonlinear stiffness. Numerical simulations show useful behavior over a range of parameters even without precise tuning of the secondary system. Analytical treatment using harmonic balance followed by an informal averaging calculation yields amplitude and phase equations that capture the dynamics accurately over a range of parameters. Although intermediate expressions involved are long and unwieldy, numerical and analytical treatment of the equations lead to simplifying insights which in turn allow us to construct useful approximate formulas that can be used by practitioners. In particular, simple approximate expressions are obtained for oscillation amplitudes of the primary and secondary systems and for the negative damping range over which effective vibration stabilization occurs, in terms of system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Den Hartog, J.P.: Mechanical Vibrations. Dover Publications, New York (1985)

    MATH  Google Scholar 

  3. Elias, S., Matsagar, V.: Research developments in vibration control of structures using passive tuned mass dampers. Ann. Rev. Control 44, 129–156 (2017)

    Article  Google Scholar 

  4. Enevoldsen, I., Mørk, K.: Effects of a vibration mass damper in a wind turbine tower. Mech. Based Des. Struct. Mach. 24(2), 155–187 (1996)

    Article  Google Scholar 

  5. Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  6. Lee, Y., Vakakis, A.F., Bergman, L., McFarland, D., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 222(2), 77–134 (2008)

    Google Scholar 

  7. Verhulst, F.: Quenching of self-excited vibrations. J. Eng. Math. 53(3–4), 349–358 (2005)

    Article  MathSciNet  Google Scholar 

  8. Qin, Z., Chen, Y., Zhan, X., Liu, B., Zhu, K.: Research on the galloping and anti-galloping of the transmission line. Int. J. Bifurc. Chaos 22(02), 1250038 (2012)

    Article  Google Scholar 

  9. Habib, G., Kerschen, G.: Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc. R. Soc. Math. Phys. Eng. Sci. 471(2176), 20140976 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Dai, H., Abdelkefi, A., Wang, L.: Usefulness of passive non-linear energy sinks in controlling galloping vibrations. Int. J. Non-Linear Mech. 81, 83–94 (2016)

    Article  Google Scholar 

  11. Guo, H., Liu, B., Yu, Y., Cao, S., Chen, Y.: Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink. Arch. Appl. Mech. 87(6), 1007–1018 (2017)

    Article  Google Scholar 

  12. Han, L., Zhang, Y., Li, X., Jiang, L., Chen, D.: Galloping reduction of transmission lines by using phononic crystal. Crystals 7(11), 346 (2017)

    Article  Google Scholar 

  13. Nguyen, C.H., Macdonald, J.H.: Galloping analysis of a stay cable with an attached viscous damper considering complex modes. J. Eng. Mech. 144(2), 04017175 (2018)

    Article  Google Scholar 

  14. Bukhari, M.A., Barry, O.R.: Nonlinear vibrations analysis of overhead power lines: a beam with mass-spring-damper-mass systems. J. Vib. Acoust. 140(3), 031004 (2018)

    Article  Google Scholar 

  15. Bukhari, M., Barry, O.: Exact nonlinear dynamic analysis of a beam with a nonlinear vibration absorber and with various boundary conditions. J. Comput. Nonlinear Dyn. 15(1), 011003 (2020)

    Article  Google Scholar 

  16. Huang, Q., Lin, T., Safarpour, M.: Flow-induced vibration attenuation of a viscoelastic pipe conveying fluid under sinusoidal flow using a nonlinear absorber. Mech. Based Des. Struct. Mach. 1–31, (2020)

  17. Singla, S., Chatterjee, A.: Nonlinear responses of an SDOF structure with a light, whirling, driven, untuned pendulum. Int. J. Mech. Sci. 168, 105305 (2020)

  18. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, Weinheim (1994)

    MATH  Google Scholar 

  19. Marathe, A., Chatterjee, A.: Asymmetric mathieu equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 1643–1659 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Nandakumar, K., Chatterjee, A.: Continuation of limit cycles near saddle homoclinic points using splines in phase space. Nonlinear Dyn. 57, 383–399 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Funding

We have not received any financial support for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Vyasarayani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The expressions for P and Q in Eq. (12) and Eq. (13) are shown below

$$\begin{aligned}&P=-\frac{3}{4}{\bar{B}}^{2}\bar{C}\cos \left( t+\bar{\phi } \right) {k_d} \\&\quad +\, \frac{3}{4}{\bar{B}}^{2}\bar{C}\cos \left( 3t+3\bar{\phi } \right) {k_d} \frac{3}{4}{\bar{C}}^{3}\cos \left( t+\bar{\phi } \right) {k_d} \\&\quad -\,\frac{1}{4} {\bar{C}}^{3}\cos \left( 3t+3\bar{\phi } \right) {k_d} + \frac{1}{4} {\bar{B}}^{3} {k_d} \sin \left( 3t+3\bar{\phi } \right) \\&\quad -\,\frac{3}{4}{\bar{B}}^{3}{k_d} \sin \left( t+\bar{\phi } \right) -\frac{3}{4}\bar{B}{\bar{C}}^{2}{k_d} \sin \left( 3t+ 3\bar{\phi } \right) \\&\quad -\,\frac{3}{4}\bar{B}\bar{C}^{2}\sin \left( t+\bar{\phi } \right) {k_d} - c\bar{A} \cos \left( t+\bar{\phi } \right) \\&\quad -\,\bar{B}\cos \left( t+\bar{\phi } \right) {c_d}-\bar{C} \cos \left( t+\bar{\phi }\right) {k_d} \\&\quad +\,\dot{\bar{A}}\cos \left( t+\bar{\phi } \right) - \bar{A}\sin \left( t+\bar{\phi } \right) \dot{\bar{\phi }} -\bar{B}\sin \left( t+\bar{\phi } \right) {k_d}\\&\quad +\,\bar{C}\sin \left( t+\bar{\phi } \right) {c_d}, \\&Q=\frac{1}{4m}\,\bigg (3{\bar{B}}^{3}k_d\,\sin \left( t+\bar{\phi }\right) -{\bar{B}}^{3} k_d\,\sin \left( 3\,t+3\,\bar{\phi }\right) \\&\quad +\,3\,{\bar{B}}^{2}\bar{C} \cos \left( t+\bar{\phi }\right) k_d \\&\quad -\,3\,{\bar{B}}^{2}\bar{C}\,\cos \left( 3\,t+3\,\bar{\phi } \right) k_d+3\,\bar{B} {\bar{C}}^{2}\sin \left( t+\bar{\phi } \right) k_d \\&\quad +\,3\,\bar{B}\,{\bar{C}}^{2}k_d \,\sin \left( 3\,t+3\,\bar{\phi } \right) \\&\quad +\,3\,{\bar{C}}^{3}\cos \left( t+\bar{\phi } \right) k_d+{\bar{C}}^{3}\cos \left( 3\,t+3\,\bar{\phi } \right) k_d\\&\quad -\,4\,\bar{A}\,\sin \left( t+\bar{\phi } \right) m \dot{\bar{\phi }}-4\,\bar{B}\,\sin \left( t+\bar{\phi }\right) m\dot{\bar{\phi }}\\&\quad -\,4\,\bar{C}\,\cos \left( t+\bar{\phi } \right) m\dot{\bar{\phi }}-4\,\bar{A}\,\sin \left( t+\bar{\phi } \right) m\\&\quad +\,4\,\dot{\bar{A}}\,\cos \left( t+\bar{\phi }\right) m +4\,\bar{B}\,\cos \left( t+\bar{\phi } \right) c_d \\&\quad +\,4\,\bar{B}\,\sin \left( t+\bar{\phi } \right) k_d-4\, \bar{B}\,\sin \left( t+\bar{\phi } \right) m\\&\quad +\,4\,\dot{\bar{B}}\,\cos \left( t+\bar{\phi } \right) m+4\,\bar{C}\,\cos \left( t+\bar{\phi }\right) k_d \\&\quad -\,4\,\bar{C}\,\cos \left( t+\bar{\phi }\right) m-4\,\bar{C}\,\sin \left( t+\bar{\phi } \right) c_d\\&\quad -\,4\,\dot{\bar{C}}\,\sin \left( t+\bar{\phi } \right) m\bigg ). \end{aligned}$$

Appendix B

The expressions for \(f_1\), \(f_2\), \(f_3\), and \(f_4\) in Eqs. (14)–(17) are shown below

$$\begin{aligned}&f_1=-\frac{1}{8}{\bar{B}}^{3} k_d\sin \left( 4t+4\bar{\phi } \right) + \frac{1}{4}{\bar{B}}^{3} k_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\,\frac{3}{8}{\bar{B}}^{2}\bar{C} k_d\cos \left( 4t+4\bar{\phi } \right) +\frac{3}{8}{\bar{B}}^{2}\bar{C} k_d \\&\quad +\,\frac{3}{8}\bar{B}{\bar{C}}^{2}k_d\sin \left( 4t+4\bar{\phi } \right) + \frac{3}{4}\bar{B}{\bar{C}}^{2}k_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,\frac{1}{2}{\bar{C}}^{3}k_d\cos \left( 2t+2\bar{\phi } \right) \\&\quad +\,\frac{1}{8}{\bar{C}}^{3} k_d\cos \left( 4t+4\bar{\phi } \right) +\frac{3}{8}{\bar{C}}^{3}k_d +\frac{1}{2}\bar{A}c\cos \left( 2t\right. \\&\quad \left. +2\bar{\phi }\right) +\frac{1}{2}\bar{A}c+\frac{1}{2}\bar{B}c_d\cos \left( 2t+2\bar{\phi } \right) \\&\quad +\, \frac{1}{2}\bar{B}c_d +\frac{1}{2}\bar{B} k_d\sin \left( 2t+2\bar{\phi } \right) +\frac{1}{2} \bar{C} k_d \cos \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) +\frac{1}{2}\bar{C} k_d-\frac{1}{2}\bar{C}c_d\sin \left( 2t+2\bar{\phi } \right) ,\\&f_2=\frac{1}{8 \bar{A}m} \bigg ( 4{\bar{A}}^{2}m\sin \left( 2t+2\bar{\phi } \right) +4{\bar{C}}^{2}c_dm\\&\quad -\,3\bar{A}{\bar{C}}^{3} k_d-4\bar{A}\bar{C} k_d-4\bar{A}\bar{B} c_d+4\bar{A}\bar{C}m \\&\quad -\,4{\bar{A}}^{2}c\,m +3\bar{A}{\bar{B}}^{2}\bar{C} k_d\,m\cos \left( 4t+4\bar{\phi } \right) \\&\quad -\,3\bar{A}\bar{B}{\bar{C}}^{2} k_d\, m \sin \left( 4t+4\bar{\phi }\right) \\&\quad -\,6\bar{A}\bar{B}{\bar{C}}^{2} k_d\,m\,\sin \left( 2t+2\bar{\phi } \right) - \bar{A}{\bar{C}}^{3} k_d\cos \left( 4t+4\bar{\phi } \right) \\&\quad -4\bar{A}{\bar{C}}^{3} k_d \cos \left( 2t+2\bar{\phi } \right) \\&\quad -\,4{\bar{A}}^{2}cm\cos \left( 2t+2\bar{\phi }\right) \\&\quad -\,4\bar{A}\bar{B} k_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\, 4\bar{A}\bar{C}k_d\cos \left( 2t+2\bar{\phi } \right) \\&\quad +\,4\bar{A}\bar{C}m\cos \left( 2t+2\bar{\phi } \right) -4{\bar{C}}^{2}c_dm\cos \left( 2t+2\bar{\phi } \right) \\&\quad -4\bar{A}\bar{B} c_d\cos \left( 2t+2\bar{\phi } \right) -3\bar{A}{\bar{B}}^{2}\bar{C} k_d \\&\quad -\,3\bar{B} \bar{C}^{3} k_d m -3\bar{A}{\bar{C}}^{3} k_d m-4\bar{B}\bar{C} k_d m-4\bar{A}\bar{B} c_d m\\&\quad -\,4\bar{A}\bar{C} k_d m-3{\bar{B}}^{3}\bar{C} k_dm \\&\quad +\,4\bar{A}\bar{B}m\sin \left( 2t+2\bar{\phi } \right) +4\bar{A}\bar{C} c_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad -{\bar{C}}^{4} k_dm\sin \left( 4t+4\bar{\phi } \right) \\&\quad -\,2{\bar{C}}^{4}k_d m\sin \left( 2t+2\bar{\phi } \right) +\bar{A}{\bar{B}}^{3} k_d\sin \left( 4t+4\bar{\phi } \right) \\&\quad -\,2\bar{A}{\bar{B}}^{3} k_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\,4{\bar{C}}^{2} k_dm\sin \left( 2t+2\bar{\phi } \right) -\bar{A}{\bar{C}}^{3}kdm\cos \left( 4t+4\bar{\phi } \right) \end{aligned}$$
$$\begin{aligned}&\quad -\,4\bar{A}{\bar{C}}^{3} k_dm\cos \left( 2t+2\bar{\phi } \right) \\&\quad -\,4\bar{B}\bar{C} c_dm\sin \left( 2t+2\bar{\phi }\right) +3{\bar{B}}^{2}{\bar{C}}^{2}k_dm\sin \left( 4t+4\bar{\phi }\right) \\&\quad - 6{\bar{B}}^{2}{\bar{C}}^{2} k_dm\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,3\bar{B}{\bar{C}}^{3}k_dm\cos \left( 4t+4\bar{\phi } \right) +3\bar{A}{\bar{B}}^{2}\bar{C} k_d\cos \left( 4t+4\bar{\phi } \right) \\&\quad -\,3\bar{A}\bar{B}{\bar{C}}^{2}k_d\sin \left( 4t+4\bar{\phi } \right) -6\bar{A}\bar{B}{\bar{C}}^{2}k_d\sin \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) -4\bar{A}\bar{B} k_dm\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\,4\bar{A}\bar{C}cm\sin \left( 2t+2\bar{\phi } \right) +4\bar{A}\bar{C}c_dm\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\bar{A}{\bar{B}}^{3}k_dm\sin \left( 4t+ 4\bar{\phi } \right) \\&\quad -\,2\bar{A}{\bar{B}}^{3} k_dm\sin \left( 2t+2\bar{\phi } \right) +4\bar{B}\bar{C} k_dm\cos \left( 2t+2\bar{\phi } \right) \\&\quad -\,4\bar{A}\bar{B}c_dm\cos \left( 2t+2\bar{\phi } \right) \\&\quad -\,4\bar{A}\bar{C}k_dm\cos \left( 2t+2\bar{\phi } \right) -{\bar{B}}^{3}\bar{C} k_dm\cos \left( 4t+4\bar{\phi } \right) \\&\quad +\,4{\bar{B}}^{3}\bar{C} k_dm\cos \left( 2t+2\bar{\phi } \right) -3\bar{A}{\bar{B}}^{2}\bar{C} k_dm \bigg ),\\&f_3=\frac{1}{8\bar{A}m}\bigg (-4\bar{A}\bar{B}m+4\bar{A}\bar{B} k_dm-4\bar{A}\bar{C} c_dm\\&\quad -\,4\bar{B}\bar{C} c_dm+\bar{A}{\bar{B}}^{3} k_d\cos \left( 4t+4\bar{\phi } \right) \\&\quad +\,\bar{A}{\bar{C}}^{3} k_d \sin \left( 4t+4\bar{\phi } \right) +2\bar{A}{\bar{C}}^{3}k_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,4{\bar{A}}^{2}cm\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,4{\bar{B}}^{2} c_dm\sin \left( 2t+2\bar{\phi } \right) +4\bar{A}\bar{B} c_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,4\bar{A}\bar{C}k_d\sin \left( 2t+2\bar{\phi } \right) -4\bar{A}\bar{C}c_d+4\bar{A}\bar{B}k_d \\&\quad +\,4{\bar{B}}^{2} k_dm+3{\bar{B}}^{4}k_dm+4{\bar{A}}^{2}m\cos \left( 2t+2\bar{\phi } \right) \\&\quad +\,3\bar{A}{\bar{B}}^{3} k_d+3\bar{A}{\bar{B}}^{3}k_dm+3{\bar{B}}^{2}{\bar{C}}^{2} k_dm \\&\quad -\,3\bar{A}\bar{B}{\bar{C}}^{2}k_d\cos \left( 4t+4\bar{\phi } \right) -4\bar{A}\bar{B} k_dm\cos \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) +4\bar{A}\bar{C}c_dm\cos \left( 2t+2\bar{\phi }\right) \\&\quad +\,4\bar{B}\bar{C}c_dm\cos \left( 2t+2\bar{\phi } \right) +\bar{A}{\bar{C}}^{3}k_dm\sin \left( 4t+4\bar{\phi } \right) \\&\quad +\,2\bar{A}{\bar{C}}^{3}k_dm\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\,3{\bar{B}}^{3}\bar{C} k_dm\sin \left( 4t+4\bar{\phi } \right) +6{\bar{B}}^{3}\bar{C} k_dm\sin \left( 2t\right. \\&\quad \left. +2\bar{\phi }\right) -3{\bar{B}}^{2}{\bar{C}}^{2}k_dm\cos \left( 4t+4\bar{\phi } \right) \\&\quad +\,\bar{B}{\bar{C}}^{3} k_dm\sin \left( 4t+4\bar{\phi } \right) +2\bar{B}{\bar{C}}^{3}k_dm\sin \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) -3\bar{A}{\bar{B}}^{2}\bar{C} k_d\sin \left( 4t+4\bar{\phi } \right) \\&\quad +\,6\bar{A}{\bar{B}}^{2}\bar{C} k_d\sin \left( 2t+2\bar{\phi } \right) +4\bar{A}\bar{B}c_dm\sin \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) +4\bar{A}\bar{C}k_dm\sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,4\bar{B}\bar{C}k_dm\sin \left( 2t+2\bar{\phi } \right) -4\bar{A}{\bar{B}}^{3} k_dm\cos \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) +\bar{A}{\bar{B}}^{3} k_dm\cos \left( 4t+4\bar{\phi } \right) \\&\quad +\,4\bar{A}\bar{B}cm\sin \left( 2t+2\bar{\phi } \right) -4\bar{C}m\bar{A}\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\,4{\bar{B}}^{2} k_dm\cos \left( 2t+2\bar{\phi } \right) \\&\quad -\,4\bar{A}\bar{B} k_d\cos \left( 2t+2\bar{\phi } \right) +4\bar{B}m\bar{A}\cos \left( 2t+2\bar{\phi } \right) \\&\quad +\,4\bar{A}\bar{C} c_d\cos \left( 2t+2\bar{\phi } \right) \\&\quad -\,4{\bar{B}}^{4} k_dm\cos \left( 2t+2\bar{\phi } \right) +{\bar{B}}^{4} k_dm\cos \left( 4t+4\bar{\phi } \right) \end{aligned}$$
$$\begin{aligned}&\quad -\,4\bar{A}{\bar{B}}^{3}k_d\cos \left( 2t+2\bar{\phi } \right) \\&\quad +\,6\bar{A}{\bar{B}}^{2}\bar{C} k_dm\sin \left( 2t+2\bar{\phi } \right) -3\bar{A}\bar{B}{\bar{C}}^{2}k_dm\cos \left( 4t\right. \\&\quad \left. +4\bar{\phi } \right) -3\bar{A}{\bar{B}}^{2}\bar{C}k_dm\sin \left( 4t+4\bar{\phi } \right) \\&\quad +\,3\bar{A}\bar{B}{\bar{C}}^{2}k_dm+3\bar{A}\bar{B}{\bar{C}}^{2} k_d-4{\bar{A}}^{2}m\bigg ),\\&f_4=\frac{1}{8\bar{A}}\bigg (-{\bar{B}}^{3} k_d\cos \left( 4t+4\bar{\phi } \right) +4{\bar{B}}^{3}k_d\cos \left( 2t\right. \\&\quad \left. +2\bar{\phi } \right) +3{\bar{B}}^{2}\bar{C} k_d \sin \left( 4t+4\bar{\phi } \right) \\&\quad -\,6{\bar{B}}^{2}\bar{C} k_d\sin \left( 2t+2\bar{\phi } \right) + 3\bar{B}{\bar{C}}^{2} k_d\cos \left( 4t+4\bar{\phi }\right) \\&\quad -\,{\bar{C}}^{3}k_d\sin \left( 4t+4\bar{\phi } \right) \\&\quad -\,2{\bar{C}}^{3}k_d\sin \left( 2t+2\bar{\phi } \right) -3{\bar{B}}^{3} k_d-3\bar{B}{\bar{C}}^{2} k_d\\&\quad -\,4\bar{A}c\sin \left( 2t+2\bar{\phi } \right) -4\bar{B} c_d \sin \left( 2t+2\bar{\phi } \right) \\&\quad +\,4\bar{B} k_d\cos \left( 2t+2\bar{\phi } \right) -4\bar{C} k_d\sin \left( 2t+2\bar{\phi } \right) \\&\quad -\,4\bar{C} c_d\cos \left( 2t+2\bar{\phi } \right) -4\bar{B}k_d+4\bar{C} c_d \bigg ). \end{aligned}$$

Appendix C

The expressions for \(m_0, m_1\), and \(m_2\) in Eq. (34) are shown below

$$\begin{aligned}&m_0 =\frac{c_{{d}}}{8\left( -m+\sqrt{r}m-1 \right) ^{3}{m} ^{3}\left( \sqrt{r}-1 \right) ^{2}}\\&\quad \bigg (-2{c_{{d}}}^{2}{m}^{3}r+{c_{{d}}}^{2}{m}^{6}{r}^{5} -{c_{{d}}}^{2}mr+ 28{c_{{d}}}^{2}{m}^{6}{r}^{2} \\&\quad -\,3{c_{{d}}}^{2}{m}^{2}r+4{r}^{3/2}{c_{{d}}}^{2}m+10{c_{{d}}}^{2}{m}^{4}{r}^{2}+57{c_{{d}}}^{2}{m}^{5}{r}^{2}\\&\quad -\,7{r}^{3}{c_{{d}}}^{2}{m}^{2}+8{r}^{7/2}{c_{{d}}}^{2}{m}^{4}-44{c_{{d}}}^{2}{m}^{3}{r}^{2} \\&\quad -\,34{c_{ {d}}}^{2}{m}^{3}{r}^{3}+16{r}^{3/2}{c_{{d}}}^{2}{m}^{3} +56{r}^{5/2 }{c_{{d}}}^{2}{m}^{3}\\&\quad +\,{c_{{d}}}^{2}{m}^{6}r- 8{r}^{3/2} {c_{{d}}}^{2}{m}^{6}+24{r}^{5/2}{c_{{d}}}^{2}{m}^{2} \\&\quad -\,5{r}^{2}{c_{{d}}}^{2}m+2{r}^{5/2}{c_{{d}}}^{2}m-30{r}^{2}{c_{{d}}}^{2}{m}^{2}-2{c_{{d}}}^{2}{m}^{4}{r}^{4}\\&\quad +\,70{c_{{d}}}^{2}{m}^{6}{r}^{3}-8{r}^{9/2}{c_{{d}}}^{2}{m}^{6}-20{r}^{3/2}{c_{{d}}}^{2}{m}^{5} \\&\quad +\,28{c_{{d}}}^{2}{m}^{6}{r}^{4}+3{c_{{d}}}^{2}{m}^{5}r+85{c_{{d}}}^{2} {m}^{5}{r}^{3}-90{r}^{5/2}{c_{{d}}}^{2}{m}^{5}\\&\quad +\,8{r}^{7/2}{c_{{d}}}^{2}{m}^{3}-2{r}^{9/2}{c_{{d}}}^{2}{m}^{5} \\&\quad -\,48{r}^{7/2}{c_{{d}}}^{2}{m}^{5}-10{c_{{d}}}^{2}{m}^{4}{r}^{3}+15{c_{{d}}}^{2}{m}^{5}{r}^{4}-8{r}^{3/2}{c_{{d}}}^{2}{m}^{4}\\&\quad +\,16{r}^{3/2}{c_{{d}}}^{2}{m}^{2}-56{r}^{5/2}{c_{{d}} }^{2}{m}^{6} \\&\quad -\,56{r}^{7/2}{c_{{d}}}^{2}{m}^{6} +2{c_{{d}}}^{2}{m}^{4}r-32\sqrt{r}{m}^{4}-4{r}^{5/2}{m}^{5}\\&\quad -\,40{r}^{3/2}{m}^{5}-32{r}^{3/2}{m}^{4}+20{m}^{5}{r}^{2}+40{m}^{5}r \\&\quad +\,8{m}^{4}{r}^{2}+48{m}^{4}r-4{m}^{3}{r}^{3/2}+12{m}^{3}r -12{m}^{3}\sqrt{r}\\&\quad -\,20\sqrt{r}{m}^{5}+4{r}^{3/2}k_{{d}}{m}^{2} -48k_{{d}}{m}^{4}{r}^{2} \\&\quad -\,40k_{{d}}{m}^{5}{r}^{2}-36k_{{d}}{m}^{3}r-12k_{{d}}{m}^{3}{r}^{2}+72{r}^{3/2}k_{{d}}{m}^{4}\\&\quad -\,20k_{{d}}{m}^{5}r+12\sqrt{r}k_{{d}}{m}^{4}+40{r}^{3/2}k_{{d}}{m}^{5} \\&\quad +\,20{r}^{5/2}k_{{d}}{m}^{5}-48k_{{d}}{m}^{4}r+4\sqrt{r}k_{{d}}{m}^{2}-8k_{{d}}{m}^{2}r\\&\quad +\,12k_{{d}}{m}^{3}\sqrt{r}+4{m}^{3}+4{m}^{5}+8{m}^{4} \end{aligned}$$
$$\begin{aligned}&\quad +\,24{r}^{2}{c_{{d}}}^{2}k_{{d}}m+280{r}^{7/2} {c_{{d}}}^{2}k_{{d}}{m}^{5}+150{r}^{7/2}{c_{{d}}}^{2}k_{{d}}{m}^{4} \\&\quad -\,10{r}^{7/2}{c_{{d}}}^{2}k_{{d}}{m}^{2}-280{c_{{d}}}^{2}k_{{d}}{m}^{5}{r}^{3} \\&\quad -\,56{r}^{2}{c_{{d}}}^{2}k_{{d}}{m}^{5}-60{r}^{2}{c_{{d}}}^{2}k_{{d}} {m}^{4}+8{c_{{d}}}^{2}k_{{d}}m{r}^{3}\\&\quad +\,56{r}^{9/2}{c_{{d}}}^{2} k_{{d}}{m}^{5}+10{r}^{9/2}{c_{{d }}}^{2}k_{{d}}{m}^{4} \\&\quad -\,60{c_{{d}}}^{2}k_{{d}}{m}^{4}{r}^{4}-200{c_{{d}}}^{2}k_{{d}} {m}^{4} {r}^{3} +40{c_{{d}}}^{2}k_{{d}}{m}^{2}{r}^{3}\\&\quad -\, 8{c_{{d}}}^{2} k_{{d}}{m}^{5}{r}^{5}- 168{c_{{d}}}^{2}k_{{d}}{m}^{5}{r}^{4} \\&\quad -\,112{c_{{d}}}^{2}k_{{d}}{m}^{6}{r}^{3}-16{c_{{d}}}^{2}k_{{d}}{m}^{6}{r}^{5}-16{c_{{d}}}^{2}k_{{d}}{m}^{6}{r}^{2}\\&\quad -\,8{r}^{3/2}{c_{{d}}}^{2}k_{{d}}m+8{r}^{3/2}{c_{{d}}}^{2}k_{{d}}{m}^{5} \\&\quad +\,10{r}^{3 /2}{c_{{d}}}^{2}k_{{d}}{m}^{4} -10{r}^{3/2}{c_{{d}}}^{2} k_{{d}}{m}^{2}+168{r}^{5/2}{c_{{d}}}^{2}k_{{d}}{m}^{5} \\&\quad +\,150{r}^{5/2}{c_{{d}}}^{2 }k_{{d}}{m}^{4}-60{r}^{5/2}{c_{{d}}}^{2} k_{{d}}{m}^{2} \\&\quad -\,24{r}^{5/2}{c_{{d}}}^{2}k_{{d}}m-112{c_{{d}}}^{2}k_{{d}}{m}^{6} {r}^{4}+2{r}^{3/2}{c_{{d}}}^{2}k_{{d}}{m}^{6}\\&\quad +\,2{r}^{11/2} {c_{{d}}}^{2} k_{{d}}{m}^{6}+56{r}^{9/2}{c_{{d}}}^{2}k_{{d}}{m}^{6} \\&\quad +\,140{r}^{7/2}{c_{{d}}}^{2 }k_{{d}}{m}^{6}+56{r}^{5/2}{c_{{d}}}^{2} k_{{d}} {m}^{6}\\&\quad +\,40{r}^{2}{c_{{d}}}^{2}k_{{d}}{m}^{2}-2{r}^{5/2} {c_{{d}}}^{2}k_{{d}}+4{r}^{2}{c_{{d}}}^{2}k_{{d}}\\&\quad +\,12{r}^{5/2}k_{{d}}{m}^{4}-2{r}^{3/2}{c_{{d}}}^{2} k_{{d}} \\&\quad +\,4\sqrt{r}k_{{d}}{m}^{5}+36k_{{d}}{m}^{3}{r}^{3/2}-4k_{{d}}{m}^{5}{r}^{3} \bigg ),\\&m_1 =\frac{c_d}{4{r \left( -m+\sqrt{r}m-1 \right) ^{2}{m}^{3} \left( \sqrt{r}-1 \right) }} \\&\quad \bigg (6{c_{{d}}}^{2}{m}^{3}r +{c_{{d}}}^{2}mr +4{c_{{d}}}^{2}{m}^{2}r-3{r}^{3/2}{c_{{d}}}^{2}m \\&\quad +\,70{c_{{d}}}^{2} {m}^{4}{r}^{2}+ 26{c_{{d}}}^{2}{m}^{5}{r}^{2} -2{r}^{3}{c_{{d}}}^{2} {m}^{2} \\&\quad -\,{r}^{7/2}{c_{{d}}}^{2}{m}^{4}+64{c_{{d}}}^{2}{m}^{3}{r}^{2}+6{c_{{d}}}^{2}{m}^{3}{r}^{3}-33{r}^{3/2}{c_{{d}}}^{2}{m}^{3} \\&\quad -\,48{r}^{5/2}{c_{{d}}}^{2}{m}^{3}-7{r}^{5/2}{c_{{d}}}^{2}{m}^{2}+2{r}^{2}{c_{{d}}}^{2}m\\&\quad +\,22{r}^{2}{c_{{d}}}^{2}{m}^{2}-4{c_{{d}}}^{2}{m}^{4}{r}^{4}-8{r}^{3/2}{c_{{d}}}^{2}{m}^{5}+{c_{{d}}}^{2}{m}^{5}r \\&\quad +\,37{c_{{d}}}^{2}{m}^{5}{r}^{3}-43{r}^{5/2}{c_{{d}}}^{2}{m}^{5}+5{r}^{7/2}{c_{{d}}}^{2}{m}^{3}\\&\quad +\,{r}^{9/2}{c_{{d}}}^{2}{m}^{5}-14{r}^{7/2}{c_{{d}}}^{2}{m}^{5}+42{c_{{d}}}^{2}{m}^{4}{r}^{3} \\&\quad -\,27{r}^{3/2}{c_{{d}}}^{2}{m}^{4}-17{r}^{3/2}{c_{{d}}}^{2}{m}^{2}+4{c_{{d}}}^{2}{m}^{4}r\\&\quad +\,18\sqrt{r}{m}^{4}+{r}^{5/2}{m}^{5}+18{r}^{3/2}{m}^{5}+6{r}^{3/2}{m}^{4} \\&\quad -\,7{m}^{5}{r}^{2}-22{m}^{5}r-18{m}^{4}r-2{m}^{3}r+5{m}^{3}\sqrt{r}\\&\quad -\,2\sqrt{r}k_d{m}^{5}-6k_d{m}^{3}{r}^{3/2}+6k_d{m}^{4}{r}^{2} \\&\quad +\,8k_d{m}^{5}{r}^{2}+12k_d{m}^{3}r-18{r}^{3/2}k_d{m}^{4}+8k_d{m}^{5}r\\&\quad -\,6\sqrt{r}k_d{m}^{4} -12{r}^{3/2}k_d{m}^{5}-2{r}^{5/2}k_d{m}^{5} \\&\quad +\,18k_d{m}^{4}r-2 \sqrt{r}k_d{m}^{2}+2k_d{m}^{2}r-6k_d{m}^{3}\sqrt{r}\\&\quad -\,12{r}^{2}{c_{{d}}}^{2}k_d{m}^{5}-50{r}^{2}{c_{{d}}}^{2}k_d{m}^{4}+2{c_{{d}}}^{2}k_dm{r}^{3} \\&\quad +\,4{r}^{9/2}{c_{{d}}}^{2}k_d{m}^{5}-2{r}^{9/2}{c_{{d}}}^{2}k_d{m}^{4}-8{c_{{d}}}^{2}k_d{m}^{4}{r}^{4}\\&\quad -\,110{c_{{d}}}^{2}k_d{m}^{4}{r}^{3}-10{c_{{d}}}^{2}k_d{m}^{2}{r}^{3} \\&\quad -\,20{c_{{d}}}^{2}k_d{m}^{5}{r}^{4}+10{r}^{3/2}{c_{{d}}}^{2}k_dm+2{r}^{3/2}{c_{{d}}}^{2}k_d{m}^{5}\\&\quad +\,10{r}^{3/2}{c_{{d}}}^{2}k_d{m}^{4}+20{r}^{3/2}{c_{{d}}}^{2}k_d{m}^{2} \\&\quad +\,32{r}^{5/2}{c_{{d}}}^{2}k_d{m}^{5}+104{r}^{5/2}{c_{{d}}}^{2}k_d{m}^{4}\\&\quad +\,56{r}^{5/2}{c_{{d}}}^{2}k_d{m}^{2}+8{r}^{5/2}{c_{{d}}}^{2}k_dm-60{r}^{2}{c_{{d}}}^{2}k_d{m}^{2} \\&\quad -\,20{r}^{2}{c_{{d}}}^{2}k_dm+42{r}^{7/2}{c_{{d}}}^{2}k_d{m}^{5}+56{r}^{7/2}{c_{{d}}}^{2}k_d{m}^{4}\\&\quad -\,6{r}^{7/2}{c_{{d}}}^{2}k_d{m}^{2}-48{c_{{d}}}^{2}k_d{m}^{5}{r}^{3} \end{aligned}$$
$$\begin{aligned}&\quad +\,6{c_{{d}}}^{2}k_d{m}^{3}{r}^{4}+120{r}^{5/2}{c_{{d}}}^{2}k_d{m}^{3}+20{r}^{3/2}{c_{{d}}}^{2}k_d{m}^{3}\\&\quad +\,8{r}^{7/2}{c_{{d}}}^{2}k_d{m}^{3}-74{c_{{d}}}^{2}k_d{m}^{3}{r}^{3} \\&\quad -\,80{r}^{2}{c_{{d}}}^{2}k_d{m}^{3}+13\sqrt{r}{m}^{5}-3{m}^{3}-3{m}^{5}-6{m}^{4}\\&\quad -\,2{r}^{2}{c_{{d}}}^{2}k_d+2{r}^{3/2}{c_{{d}}}^{2}k_d- 84{r}^{5/2}{c_{{d}}}^{2}{m}^{4}\bigg ),\\&m_2=-\frac{c_{{d}}}{ \left( -m+\sqrt{r}m-1 \right) \left( \sqrt{r}-1 \right) {m}^{2}} \\&\quad \bigg ( k_d{m}^{3}{r}^{5/2}+6k_d{m}^{3}{r}^{3/2}+9{r}^{3/2}k_d{m}^{2} -6{m}^{3}{r}^{3/2} \\&\quad -\,4k_d{m}^{3}{r}^{2}+3{r}^{3/2}k_dm-3 {r}^{3/2}{m}^{2}+k_d{m}^{3} \sqrt{r}\\&\quad -4k_d{m}^{3}r-3{r}^{2}k_d{m}^{2}+2{m}^{3}{r}^{2}+3\sqrt{r}k_d{m}^{2} \\&\quad -\,2{m}^{3}\sqrt{r}-9k_d{m}^{2}r+6{m}^{3}r+3\sqrt{r}k_dm-3\sqrt{r}{m}^{2}\\&\quad -\,6rk_dm+6r{m}^{2}+\sqrt{r}k_d-\sqrt{r}m -rk_d+mr \bigg ), \end{aligned}$$

where \(r=c/c_d\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirude, A., Vyasarayani, C.P. & Chatterjee, A. Towards design of a nonlinear vibration stabilizer for suppressing single-mode instability. Nonlinear Dyn 103, 1563–1583 (2021). https://doi.org/10.1007/s11071-021-06207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06207-7

Keywords

Navigation