Skip to main content

Advertisement

Log in

Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an adaptive and passive galloping suppression of a suspended linear cable is investigated. The limit cycle oscillation (LCO) of cable due to nonlinear wind loading is effectively eliminated by a lightweight, easy-to-make attachment: nonlinear energy sink (NES). Analytical mechanism of LCO is explored by using harmonic balance method, implying that NES is valid for LCO suppression under any wind speed. Finally, the influences of mass ratio, damping, stiffness and location of NES on vibration suppression are highlighted in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sirohi, J., Mahadik, R.: Harvesting wind energy using a galloping piezoelectric beam. J. Vib. Acoust. 134(1), 011009 (2012)

    Article  Google Scholar 

  2. Den Hartog, J.P.: Transmission line vibration due to sleet. Trans. AIEE 4(51), 1074–1076 (1932)

    Google Scholar 

  3. Jones, K.F.: Coupled vertical and horizontal galloping. J. Eng. Mech. ASCE. 118(1), 92–107 (1992)

    Article  Google Scholar 

  4. Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1:2 internal resonance. J. Sound Vib. 214(5), 915–940 (1998)

    Article  Google Scholar 

  5. Yu, P., Desai, Y.M., Shah, A.H., Popplewell, N.: Three-degree-of-freedom model for galloping. Part I: formulation. J. Eng. Mech. ASCE. 119(12), 2404–2425 (1993)

    Article  Google Scholar 

  6. Yu, P., Desai, Y.M., Popplewell, N., Shah, A.H.: Three-degree-of-freedom model for galloping. Part II: solutions. J. Eng. Mech. ASCE. 119(12), 2426–2448 (1993)

    Article  Google Scholar 

  7. Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15), 1003–1014 (2009)

    Article  Google Scholar 

  8. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1), 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  9. Yan, Z., Yan, Z., Li, Z., Tan, T.: Nonlinear galloping of internally resonant iced transmission lines considering eccentricity. J. Sound Vib. 331(15), 3599–3616 (2012)

    Article  Google Scholar 

  10. Guo, T., Kang, H., Wang, L., Zhao, Y.: A boundary modulation formulation for cable’s non-planar coupled dynamics under out-of-plane support motion. Arch. Appl. Mech. 86(4), 729–741 (2016)

    Article  Google Scholar 

  11. Gattulli, V.: Advanced control strategies in cable dynamics. Civ. Eng. Comput. Tools Techn. 11, 243–269 (2007)

    Article  Google Scholar 

  12. Wang, H., Elcrat, A.R., Egbert, R.I.: Modelling and boundary control of conductor galloping. J Sound Vib. 161(2), 301–315 (1993)

    Article  MATH  Google Scholar 

  13. Lu, M.L., Popplewell, N., Shah, A.H., Chan, J.K.: Hybrid nutation damper for controlling galloping power lines. IEEE T Power Deliver. 22(1), 450–456 (2007)

    Article  Google Scholar 

  14. Hunt, J.C.R., Richards, D.J.W.: Overhead-line oscillations and the effect of aerodynamic dampers. P I Electr Eng. 116(11), 1869–1874 (1969)

    Article  Google Scholar 

  15. Richardson, A.S.: Dynamic damper for galloping conductors. Elect, World (1965)

    Google Scholar 

  16. Keutgen, R., Lilien, J.L.: A new damper to solve galloping on bundled lines. Theoretical background, laboratory and field results. IEEE Power Eng. Rev. 17(7), 51–51 (1997)

    Google Scholar 

  17. Qin, Z., Chen, Y., Zhan, X., Liu, B., Zhu, K.: Research on the galloping and anti-galloping of the transmission line. Int. J. Bifurcat. Chaos. 22(2), 1250038 (2012)

    Article  MATH  Google Scholar 

  18. Vakakis, A.F., Gendelman, O.V.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, London (2009)

    Google Scholar 

  19. Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33(1), 87–102 (2003)

    Article  MATH  Google Scholar 

  20. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Health Monit. 13(1), 41–75 (2006)

    Article  Google Scholar 

  21. Gendelman, O.V., Bar, T.: Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Phys. D 239(3), 220–229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Domany, E., Gendelman, O.V.: Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J Sound Vib. 332(21), 5489–5507 (2013)

    Article  Google Scholar 

  23. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46(6), 1371–1394 (2008)

    Article  Google Scholar 

  24. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45(3), 693–711 (2007)

    Article  Google Scholar 

  25. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45(10), 2391–2400 (2007)

    Article  Google Scholar 

  26. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50(3), 781–794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y.W., Zang, J., Yang, T.Z., Fang, B., Wen, X.: Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink. Math. Probl. Eng. 2013, 348042 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Weiss, M., Vaurigaud, B., Savadkoohi, A. T., Lamarque C.: Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment. MATEC Web of Conferences. EDP Sciences. 24 (2015)

  30. Izzi, M., Caracoglia, L., Noè, S.: Investigating the use of targeted-energy-transfer devices for stay-cable vibration mitigation. Struct. Control Health Monit. 23(2), 315–332 (2016)

    Article  Google Scholar 

  31. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A. 341(1626), 299–315 (1974)

    Article  Google Scholar 

  32. Al-Qassab, M., Nair, S.: Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass. J Sound Vib. 270(1), 191–206 (2004)

    Article  MATH  Google Scholar 

  33. Arafat, H.N., Nayfeh, A.H.: Non-linear responses of suspended cables to primary resonance excitations. J Sound Vib. 266(2), 325–354 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Natural Science Foundation of China (Grant No. 11302145), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130032120035) and Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 15JCQNJC04900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Liu, B., Yu, Y. et al. Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink. Arch Appl Mech 87, 1007–1018 (2017). https://doi.org/10.1007/s00419-017-1227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1227-z

Keywords

Navigation