Skip to main content
Log in

Enhancement of synchronized chaotic state in a delay-coupled complex neuronal network

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Synchronized firing of neurons is considered as one of the crucial characteristics for signal transmission and neuronal coding. In this article, spatiotemporal synchronization of coupled chaotic Chialvo maps is studied over a network where the connection topology changes at every time instance with chaotically changing rewiring probability. However, the main objective of this study is to investigate the effect of time delay in the ensemble behavior of neurons. As it is well known that delay is unavoidable in neuronal system, we introduce a delay parameter in the coupling term. Examining the bifurcation diagrams, we observe interesting changes in the synchronization behavior with the increment of delay. These results are complemented by the linear stability analysis of the synchronized state of the system using master stability function technique. Moreover, effects of time delay on synchronization behavior of the coupled system are investigated by evaluating average synchronization error and synchronization time. We observe non-monotonic variation of synchronization time with respect to coupling strength for non-delayed system, whereas this characteristic does not persist with the increment of delay. It is observed that the synchronized region of the considered model appears as a combination of homogeneous steady state and homogeneous chaotic state for both delayed and non-delayed systems. Our key finding in this study is the enhancement of synchronized chaotic region and consequently reduction of synchronized steady state with the increasing values of time delay in the system. Global stability of the synchronized state is examined by basin stability measure. It is also observed that depending on different values of delay, the system exhibits various spatiotemporal patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Borges, R., Borges, F., Lameu, E., Batista, A., Iarosz, K., Caldas, I., Viana, R., Sanjuán, M.: Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin-Huxley neuronal network. Commun. Nonlinear Sci. Numer. Simul. 34, 12–22 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440 (1998)

    MATH  Google Scholar 

  3. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288(5), 60–69 (2003)

    Google Scholar 

  4. Mantzaris, A.V., Bassett, D.S., Wymbs, N.F., Estrada, E., Porter, M.A., Mucha, P.J., Grafton, S.T., Higham, D.J.: Dynamic network centrality summarizes learning in the human brain. J. Complex Netw. 1(1), 83–92 (2013)

    Google Scholar 

  5. Rand, D.G., Arbesman, S., Christakis, N.A.: Dynamic social networks promote cooperation in experiments with humans. Proc. Natl. Acad. Sci. USA 108(48), 19193–19198 (2011)

    Google Scholar 

  6. Hakansson, H.: Industrial Technological Development. Routledge Revivals, A Network Approach. Routledge (2015)

  7. Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Hou, H., Zhang, Q., Zheng, M.: Cluster synchronization in nonlinear complex networks under sliding mode control. Nonlinear Dyn. 83(1–2), 739–749 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, X., Lv, X., Li, X.: Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control. Nonlinear Dyn. 90(3), 2199–2207 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Chakraborty, P., Poria, S.: Extreme multistable synchronisation in coupled dynamical systems. Pramana 93(2), 19 (2019)

    Google Scholar 

  11. Poria, S., Shrimali, M.D., Sinha, S.: Enhancement of spatiotemporal regularity in an optimal window of random coupling. Phys. Rev. E 78(3), 035201 (2008)

    Google Scholar 

  12. Nag, M., Poria, S.: Synchronized states and multistability in a random network of coupled discontinuous maps. Chaos 25(8), 083114 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Ma, J., Wu, F., Alsaedi, A., Tang, J.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93(4), 2057–2069 (2018)

    Google Scholar 

  14. Jiruska, P., De Curtis, M., Jefferys, J.G., Schevon, C.A., Schiff, S.J., Schindler, K.: Synchronization and desynchronization in epilepsy: controversies and hypotheses. J. Physiol. (Lond.) 591(4), 787–797 (2013)

    Google Scholar 

  15. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006)

    Google Scholar 

  16. Palop, J.J., Mucke, L.: Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17(12), 777 (2016)

    Google Scholar 

  17. Hodgkin, A.L., Huxley, A.F.: Propagation of electrical signals along giant nerve fibres. Proc. R. Soc. Lond. 140(899), 177–183 (1952)

    Google Scholar 

  18. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Google Scholar 

  19. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 17(4), 257–278 (1955)

    Google Scholar 

  20. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  21. Hindmarsh, J., Rose, R.: A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162 (1982)

    Google Scholar 

  22. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. 221(1222), 87–102 (1984)

    Google Scholar 

  23. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    MathSciNet  Google Scholar 

  25. Chialvo, D.R.: Generic dynamics on a two-dimensional map. Chaos Solit. Fract. 5(3–4), 461–479 (1995)

    MATH  Google Scholar 

  26. Crook, S.M., Ermentrout, G.B., Vanier, M.C., Bower, J.M.: The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J. Comput. Neurosci. 4(2), 161–172 (1997)

    MATH  Google Scholar 

  27. Kandel, E.R., Schwartz, J.H., Jessell, T.M., of Biochemistry, D., Jessell, M.B.T., Siegelbaum, S., Hudspeth, A.: Principles of Neural Science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  28. Ibarz, B., Casado, J.M., Sanjuán, M.A.: Map-based models in neuronal dynamics. Phys. Rep. 501(1–2), 1–74 (2011)

    Google Scholar 

  29. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  30. Girardi-Schappo, M., Tragtenberg, M., Kinouchi, O.: A brief history of excitable map-based neurons and neural networks. J. Neurosci. Methods 220(2), 116–130 (2013)

    Google Scholar 

  31. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92(7), 074104 (2004)

    Google Scholar 

  32. Nordenfelt, A., Sanjuán, M.A.: Bursting frequency versus phase synchronization in time-delayed neuron networks. Phys. Rev. E 87(5), 052903 (2013)

    Google Scholar 

  33. Sun, X., Li, G.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89(4), 2509–2520 (2017)

    MathSciNet  Google Scholar 

  34. Wang, Q., Duan, Z., Perc, M., Chen, G.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. EPL 83(5), 50008 (2008)

    Google Scholar 

  35. Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83(4), 046207 (2011)

    Google Scholar 

  36. Wang, Q., Chen, G., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One 6(1), e15851 (2011)

    Google Scholar 

  37. Wang, Q., Perc, M., Duan, Z., Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80(2), 026206 (2009)

    Google Scholar 

  38. Yu, H., Wang, J., Du, J., Deng, B., Wei, X., Liu, C.: Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks. Phys. Rev. E 87(5), 052917 (2013)

    Google Scholar 

  39. Wang, Q., Chen, G.: Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapses. Chaos 21(1), 013123 (2011)

    Google Scholar 

  40. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29(01), 1450239 (2015)

    Google Scholar 

  41. Ma, J., Song, X., Tang, J., Wang, C.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Google Scholar 

  42. Ermentrout, B., Ko, T.W.: Delays and weakly coupled neuronal oscillators. Philos. Trans. R. Soc. A 367(1891), 1097–1115 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Zhu, J., Chen, Z., Liu, X.: Effects of distance-dependent delay on small-world neuronal networks. Phys. Rev. E 93(4), 042417 (2016)

    MathSciNet  Google Scholar 

  44. Sinha, S., Saramäki, J., Kaski, K.: Emergence of self-sustained patterns in small-world excitable media. Phys. Rev. E 76(1), 015101 (2007)

    Google Scholar 

  45. Kamal, N.K., Sinha, S.: Imbalance of positive and negative links induces regularity. Chaos Solit. Fract. 44(1–3), 71–78 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Boaretto, B., Budzinski, R., Prado, T., Lopes, S.: Mechanism for explosive synchronization of neural networks. Phys. Rev. E 100(5), 052301 (2019)

    Google Scholar 

  47. Jampa, M.P.K., Sonawane, A.R., Gade, P.M., Sinha, S.: Synchronization in a network of model neurons. Phys. Rev. E 75(2), 026215 (2007)

    MathSciNet  Google Scholar 

  48. Kucyi, A., Hove, M.J., Esterman, M., Hutchison, R.M., Valera, E.M.: Dynamic brain network correlates of spontaneous fluctuations in attention. Cereb. Cortex 27(3), 1831–1840 (2017)

    Google Scholar 

  49. Negi, S.S., Prasad, A., Ramaswamy, R.: Bifurcations and transitions in the quasiperiodically driven logistic map. Phys. D 145(1–2), 1–12 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Stilwell, D.J., Bollt, E.M., Roberson, D.G.: Sufficient conditions for fast switching synchronization in time-varying network topologies. SIAM J. Appl. Dyn. Syst. 5(1), 140–156 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)

    Google Scholar 

  52. Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system. Phys. D 4(3), 366–393 (1982)

    MathSciNet  MATH  Google Scholar 

  53. Shrii, M.M., Senthilkumar, D., Kurths, J.: Delay coupling enhances synchronization in complex networks. EPL 98(1), 10003 (2012)

    Google Scholar 

Download references

Acknowledgements

Mousumi Roy is grateful to University Grants Commission, Government of India, for financial support. The authors would like to thank the editor and anonymous reviewers for their worthwhile suggestions and comments, those really helped to improve the quality of the paper. Funding was provided by University Grants Commission (Grant No. 2061641167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Stability analysis for the fixed point of the non-delayed system

Appendix A: Stability analysis for the fixed point of the non-delayed system

We consider system (4) with \(\tau =0\) to check the stability of the fixed point of the non-delayed system with the corresponding time-averaged adjacency matrix, obtained from Laplacian (3) as,

$$\begin{aligned} \bar{{\mathcal {A}}}= {\left\{ \begin{array}{ll} 1-p, &{} \hbox {if } i-1\le j \le i+1 \hbox { and } i\ne j \\ 0, &{} \hbox {if }\ i=j \\ \frac{2p}{N-3}, &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$
(A.1)

The corresponding Jacobian matrix is defined as,

$$\begin{aligned} J=\begin{pmatrix} R &{} S &{} T &{} T &{} . &{} . &{} . &{} T &{} S\\ S &{} R &{} S &{} T&{} . &{} .&{}.&{} T&{} T\\ . &{} .&{} .&{} .&{} .&{} .&{} .&{}. &{} . \\ . &{} .&{} .&{} .&{} .&{} .&{} .&{}.&{} . \\ S &{} T &{} T &{} T&{}.&{} .&{}.&{} S &{}R \end{pmatrix}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} R= & {} \begin{pmatrix} (1-\epsilon )x_*(2-x_*)e^{(y_*-x_*)} &{} (1-\epsilon ){x_*}^2e^{(y_*-x_*)}\\ -b &{} a \end{pmatrix} , \\ S= & {} \begin{pmatrix} \frac{\epsilon }{2}(1-p) &{} 0\\ 0 &{} 0 \end{pmatrix} \end{aligned}$$

and

$$\begin{aligned} T=\begin{pmatrix} \frac{\epsilon }{2}.\frac{2p}{N-3} &{} 0\\ 0 &{} 0 \end{pmatrix}. \end{aligned}$$

Specifically, we get the nonzero fixed point as \((x_*,y_*)\) \(\approx (0.9634,0.969)\). It is well known that if the modulus of all the eigen values of \(2n\times 2n\) Jacobian matrix (A.2) is less than unity, it guarantees the stability of the fixed point. Consequently, in the process of obtaining the eigen values, we observe that above matrix (A.2) is a block circulant matrix and it is easily reduced to a block diagonal matrix as,

$$\begin{aligned} D=\begin{pmatrix} M_0 &{} O &{} O &{} O &{} . &{} . &{} . &{} O&{} O\\ O &{} M_1 &{} O &{} O &{} . &{} . &{} . &{} O&{} O\\ . &{} .&{} .&{} .&{} .&{} .&{} .&{} . &{}. \\ . &{} .&{} .&{} .&{} .&{} .&{} .&{} . &{}. \\ O &{} O &{} O &{} O &{} . &{} .&{}. &{} O &{}M_{N-1} \end{pmatrix}, \end{aligned}$$

where all \(2\times 2\) diagonal blocks \(M_r\) are defined as,

$$\begin{aligned} M_r= & {} R+\omega _rS+{\omega _r}^2T+\ldots +{\omega _r}^{N-2}T+{\omega _r}^{N-1}S \nonumber \\= & {} R+S(\omega _r+{\omega _r}^{N-1})+T({\omega _r}^2+{\omega _r}^3+\ldots +{\omega _r}^{N-2}) \nonumber \\= & {} R+2Scos{\theta _r}+T({\omega _r}^2+{\omega _r}^3+\ldots +{\omega _r}^{N-2}), \nonumber \\&\quad r=0,1,2,\ldots ,N-1, \end{aligned}$$
(A.3)

where \(\omega _r=e^{i\theta _{r}}\) and \({\theta _r=\frac{2\pi r}{N}}\). Therefore \({\omega _r}^{N-1}=e^{-i\theta r}\). Now, we investigate the modulus of the eigen values of \(M_r\) for \(0\le \theta _r\le 2\pi \) .

Fig. 10
figure 10

Maximum modulus of the eigen values of matrix (A.3) under the variation of coupling strength

We plot the maximum modulus of eigen values of the matrices \(M_r\) for \(r=0,1,2,\ldots ,(N-1)\) in Fig. 10. It is observed that the maximum modulus turns into less than unity for \(\epsilon >0.36\). Consequently, it ensures the global attracting fixed point is stable for this range of coupling strength \((0.36<\epsilon <1)\) which also validates the result we observed from Fig. 2.

Now, we consider system (4) for unit delay:

$$\begin{aligned} x_{t+1}(i)= & {} (1-\epsilon )(x_{t}(i)^2e^{(y_t(i)-x_t(i))}+k)\nonumber \\&+\frac{\epsilon }{2}\sum _{j=1}^{N}\bar{{\mathcal {A}}}_{ij}x_{t-1}(j), \nonumber \\ y_{t+1}(i)= & {} ay_t(i)-bx_t(i)+c, \quad i=1,2,\ldots ,N. \end{aligned}$$
(A.4)

This system can be transformed into a system of non-delayed equations by introducing extra variables as,

$$\begin{aligned} x_{t+1}(i)= & {} (1-\epsilon )(x_{t}(i)^2e^{(y_t(i)-x_t(i))}+k)\nonumber \\&+\frac{\epsilon }{2}\sum _{j=1}^{N}\bar{{\mathcal {A}}}_{ij}z_{t}(j), \nonumber \\ y_{t+1}(i)= & {} ay_t(i)-bx_t(i)+c,\nonumber \\ z_{t+1}(i)= & {} x_t(i), \quad i=1,2,\ldots ,N. \end{aligned}$$
(A.5)

This is a 3N-dimensional non-delayed system, and we can easily check the stability of the fixed point by the previously mentioned procedure.

Similarly, any homogeneous finite time-delayed system can be converted into a non-delayed system by introducing a suitable number of new variables, and following the same method, we can examine the stability of the fixed points of the original delay coupled system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, M., Poria, S. Enhancement of synchronized chaotic state in a delay-coupled complex neuronal network. Nonlinear Dyn 102, 745–758 (2020). https://doi.org/10.1007/s11071-020-05807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05807-z

Keywords

Navigation