Skip to main content
Log in

A novel approach to synchronizing a biological snap oscillator within a fixed time and expanding the method to various chaotic systems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The purpose of this research is to address the problem of synchronization between two identical biological hyperchaotic snap oscillator systems with unknown parameters at a fixed time, as well as to design a new theory for synchronizing two different chaotic systems. Firstly, we designed an adaptive controller using Lyapunov stability and fixed-time stability theory to achieve synchronization between two identical biological hyperchaotic snap oscillator in fixed time under unknown parameters. Among the results obtained, we found that the synchronization time for system states occurred in a very short time compared to results in previous research. Secondly, we extended and generalized synchronization between non-identical chaotic systems by creating a theory for achieving synchronization in which adaptive control and fixed-time stability are combined. Through the new theory, the unknown parameters in chaotic systems were estimated, and the settling time was determined, which turned out to be very short and independent of the initial conditions of the system states. One of what makes the scheme important is that it can be easily applied to most chaotic and even hyperchaotic systems in the shortest possible time. Finally, we gave examples of different systems to test the feasibility and effectiveness of the scheme that was designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Yang HM (2023) Thresholds, bifurcation and chaos in biological phenomena: Comment on “mathematical models for dengue fever epidemiology: A 10-year systematic review’’ by m. aguiar et al. Phys Life Rev 44:6–8. https://doi.org/10.1016/j.plrev.2022.11.005

    Article  Google Scholar 

  2. Rather SA, Bala PS (2020) Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems. World J Eng 17(1):97–114. https://doi.org/10.1108/WJE-09-2019-0254

    Article  Google Scholar 

  3. Yousefpour A, Jahanshahi H, Munoz-Pacheco JM, Bekiros S, Wei Z (2020) A fractional-order hyper-chaotic economic system with transient chaos. Chaos, Solitons & Fractals 130:109400. https://doi.org/10.1016/j.chaos.2019.109400

    Article  MathSciNet  Google Scholar 

  4. Torkura KA, Sukmana MI, Cheng F, Meinel C (2020) Cloudstrike: Chaos engineering for security and resiliency in cloud infrastructure. IEEE Access 8:123044–123060. https://doi.org/10.1109/ACCESS.2020.3007338

    Article  Google Scholar 

  5. Minati L, Gambuzza L, Thio W, Sprott J, Frasca M (2020) A chaotic circuit based on a physical memristor. Chaos, Solitons & Fractals 138:109990. https://doi.org/10.1016/j.chaos.2020.109990

    Article  MathSciNet  Google Scholar 

  6. Blasius B, Stone L (2000) Chaos and phase synchronization in ecological systems. Int J Bifurc Chaos 10(10):2361–2380. https://doi.org/10.1142/S0218127400001511

    Article  Google Scholar 

  7. Roohi M, Zhang C, Chen Y (2020) Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography. Nonlinear Dyn 100(2):3979–4001. https://doi.org/10.1007/s11071-020-05719-y

    Article  Google Scholar 

  8. Sifeu T K, Cyrille A, Victor K, Jean Chabi O (2020) Directly modulated semiconductor ring lasers: Chaos synchronization and applications to cryptography communications. Chaos Theory Appl 2(1):31–39

    Google Scholar 

  9. Samimi M, Majidi MH, Khorashadizadeh S (2020) Secure communication based on chaos synchronization using brain emotional learning. AEU-Int J Electron Commun 127:153424. https://doi.org/10.1016/j.aeue.2020.153424

    Article  Google Scholar 

  10. Gokyildirim A, Kocamaz UE, Uyaroglu Y, Calgan H (2013) A novel five-term 3d chaotic system with cubic nonlinearity and its microcontroller-based secure communication implementation. AEU-Int J Electron Commun 160:154497. https://doi.org/10.1016/j.aeue.2022.154497

    Article  Google Scholar 

  11. Wang L, Wang J, Wu Y, Sun Y, Li S, Yan L, Wang Y, Wang A (2023) Chaos synchronization of semiconductor lasers over 1040-km fiber relay transmission with hybrid amplification. Photonics Res 11(6):953–960. https://doi.org/10.1364/PRJ.478487

    Article  Google Scholar 

  12. Manhil MM, Jamal RK (2023) Effect of nonlinear properties of chaotic systems on the behavior of semiconductor lasers. J Opt, 1–6. https://doi.org/10.1007/s12596-023-01409-1

  13. Marghoti G, Ferrari F.A.S, Viana R.L, Lopes S.R, Prado T.d.L (2023) Coupling dependence on chaos synchronization process in a network of rulkov neurons. Int J Bifurc Chaos 33(11):2350132. https://doi.org/10.1142/S0218127423501328

    Article  MathSciNet  Google Scholar 

  14. Heilat AS, Karoun RC, Al-Husban A, Abbes A, Al Horani M, Grassi G, Ouannas A (2023) The new fractional discrete neural network model under electromagnetic radiation: Chaos, control and synchronization. Alex Eng J 76:391–409. https://doi.org/10.1016/j.aej.2023.06.017

    Article  Google Scholar 

  15. Ma R-R, Wu J, Wu K, Pan X (2020) Adaptive fixed-time synchronization of lorenz systems with application in chaotic finance systems. Nonlinear Dyn 109(4):3145–3156. https://doi.org/10.1007/s11071-022-07598-x

    Article  Google Scholar 

  16. Wang S, He S, Yousefpour A, Jahanshahi H, Repnik R, Perc M (2020) Chaos and complexity in a fractional-order financial system with time delays. Chaos, Solitons & Fractals 131:109521. https://doi.org/10.1016/j.chaos.2019.109521

    Article  MathSciNet  Google Scholar 

  17. Takhi H, Kemih K, Moysis L, Volos C (2020) Passivity based control and synchronization of perturbed uncertain chaotic systems and their microcontroller implementation. Int J Dyn Control 8:973–990. https://doi.org/10.1007/s40435-020-00618-x

    Article  MathSciNet  Google Scholar 

  18. Munoz-Pacheco JM, Volos C, Serrano FE, Jafari S, Kengne J, Rajagopal K (2021) Stabilization and synchronization of a complex hidden attractor chaotic system by backstepping technique. Entropy 23(7):921. https://doi.org/10.3390/e23070921

    Article  Google Scholar 

  19. Zambrano-Serrano E, Bekiros S, Platas-Garza MA, Posadas-Castillo C, Agarwal P, Jahanshahi H, Aly AA (2021) On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control. Phys A: Stat Mech Appl 578:126100. https://doi.org/10.1016/j.physa.2021.126100

    Article  MathSciNet  Google Scholar 

  20. Kumar A, Singh PP (2023) Synchronisation of unified chaotic systems using modified nonlinear active control: Circuit design, implementation, and secure communication. IETE J Res 69(10):7141–7157. https://doi.org/10.1080/03772063.2022.2060873

    Article  Google Scholar 

  21. Kuz’menko A.A (2022) Forced sliding mode control for chaotic systems synchronization. Nonlinear Dyn 109(3):1763–1775. https://doi.org/10.1007/s11071-022-07552-x

    Article  Google Scholar 

  22. Ouahabi R, Hamri N-E (2021) Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discret & Contin Dyn Syst-Ser B, 26(5). https://doi.org/10.3934/dcdsb.2020182

  23. Hamri N-E, Ouahabi R (2015) Modified projective synchronization of different chaotic systems using adaptive control. Comput Appl Math 36:1315–1332. https://doi.org/10.1007/s40314-015-0294-4

    Article  MathSciNet  Google Scholar 

  24. Khattar D, Agrawal N, Singh G (2023) Anti-difference quadratic compound synchronization of lorenz, rössler, modified finance, and shimizu-morioka chaotic systems. Indian J Phys 98(4):415–1423. https://doi.org/10.1007/s12648-023-02893-8

    Article  Google Scholar 

  25. Khattar D, Agrawal N, Singh G (2023) Triple compound combination synchronization of eleven n-dimensional chaotic systems. Int J Dyn Control 11(5):2499–2513. https://doi.org/10.1007/s40435-023-01140-6

    Article  MathSciNet  Google Scholar 

  26. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766. https://doi.org/10.1137/S0363012997321358

    Article  MathSciNet  Google Scholar 

  27. Pang H, Liu S (2021) Robust finite time passivity and stabilization of uncertain switched nonlinear system. IEEE Access 9:36173–36180. https://doi.org/10.1109/ACCESS.2021.3062661

    Article  Google Scholar 

  28. Du H, Li S, Qian C (2011) Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans Autom Control 56(11):2711–2717. https://doi.org/10.1109/TAC.2011.2159419

    Article  MathSciNet  Google Scholar 

  29. Wang L, Dong T, Ge M-F (2019) Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl Math Comput 347:293–305. https://doi.org/10.1016/j.amc.2018.11.017

    Article  Google Scholar 

  30. Polyakov A (2011) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110. https://doi.org/10.1109/TAC.2011.2179869

    Article  MathSciNet  Google Scholar 

  31. Ni J, Liu L, Liu C, Hu X, Li S (2016) Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system. IEEE Trans Circuits Syst II: Express Br 64(2):151–155. https://doi.org/10.1109/TCSII.2016.2551539

    Article  Google Scholar 

  32. Yang W, Xiao L, Huang J, Yang J (2021) Fixed-time synchronization of neural networks based on quantized intermittent control for image protection. Mathematics 9(23):3086. https://doi.org/10.3390/math9233086

    Article  Google Scholar 

  33. Degn H, Holden AV, Olsen LF (1987) Chaos in Biological Systems. Springer, New York. https://doi.org/10.1007/978-1-4757-9631-5

    Book  Google Scholar 

  34. Olusola OI, Vincent E, Njah AN, Ali E (2011) Control and synchronization of chaos in biological systems via backsteping design. Int J Nonlinear Sci 11(1):121–128. https://doi.org/10.1186/s13662-021-03224-z

    Article  MathSciNet  Google Scholar 

  35. Iqbal J, Ahmad S, Marwan M, Shaukat M (2020) Control and numerical analysis for cancer chaotic system. Arch Appl Mech 90:2597–2608. https://doi.org/10.1007/s00419-020-01748-6

    Article  Google Scholar 

  36. Alshomrani AS, Ullah MZ, Baleanu D (2021) A new approach on the modelling, chaos control and synchronization of a fractional biological oscillator. Adv Differ Equ 2021:1–20. https://doi.org/10.1186/s13662-021-03224-z

    Article  MathSciNet  Google Scholar 

  37. Vaidyanathan S (2015) Global chaos synchronization of the lotka-volterra biological systems with four competitive species via active control. Int J PharmTech Res 8(6):206–217

    Google Scholar 

  38. Sajjadi S.S, Baleanu D, Jajarmi A, Pirouz H.M (2020) A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos, Solitons & Fractals 138:109919. https://doi.org/10.1016/j.chaos.2020.109919

    Article  MathSciNet  Google Scholar 

  39. Vaidyanathan S, Feki M, Sambas A, Lien C-H (2018) A new biological snap oscillator: its modelling, analysis, simulations and circuit design. Int J Simul Process Modelling 13(5):419–432. https://doi.org/10.1504/IJSPM.2018.094734

    Article  Google Scholar 

  40. Liu S, Chen C, Peng H, others (2020) Fixed-time synchronization of neural networks with discrete delay. Math Probl Eng, 2020 . https://doi.org/10.1155/2020/7830547

  41. Polyakov A (2011) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110. https://doi.org/10.1109/TAC.2011.2179869

    Article  MathSciNet  Google Scholar 

  42. Khalil HK (2002) Nonlinear systems. Prentice Hall, Hoboken

    Google Scholar 

  43. Liu C, Liu T, Liu L, Liu K (2004) A new chaotic attractor. Chaos, Solitons & Fractals 22(5):1031–1038. https://doi.org/10.1016/j.chaos.2004.02.060

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The Corresponding author Rabiaa Ouahabi writing the main manuscript text, supervision and prepared Figs. 1, 2, 3, 4, 5, and 6 in manuscript. Chaima Boulezaz prepared Figs. 7, 8, and 9 in manuscript. All authors reviewed the manuscript

Corresponding author

Correspondence to Rabiaa Ouahabi.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouahabi, R., Boulezaz, C. A novel approach to synchronizing a biological snap oscillator within a fixed time and expanding the method to various chaotic systems. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06161-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06161-2

Keywords

Navigation