Skip to main content
Log in

Vibration suppression of nonlinear rotating metamaterial beams

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nonlinear vibration of a metamaterial structure that consists of a rotating cantilever beam attached to a periodic array of spring–mass–damper subsystems deployed for vibration suppression. The full nonlinear model of the system is developed. The nonlinear response due to a primary resonance excitation is investigated, and the capability of the metastructure to suppress vibration is examined. The mass of the resonators (absorbers) comes at the expense of the host structure’s mass itself, which makes the total mass of the system conservative. Free and forced vibration analyses are performed. We first use the method of multiple scales to analyze the nonlinear behavior of rotating beams. The perturbation solutions are validated against their numerical counterparts. Results show the presence of a critical rotational speed at which the beam undergoes bifurcation and starts to flutter. The addition of the absorbers is observed to slightly reduce this critical speed. Nevertheless, the amplitude of limit-cycle oscillations beyond bifurcation is found to decrease when equipping the rotating beam with local absorbers. The results demonstrate the capability of the metamaterial structure as an efficient damping treatment. Furthermore, we show that careful placement of the absorbers along the cantilever beam (close to the tip) enables further vibration mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( R \) :

Radius of the hub

\( \omega \) :

Angular velocity of the hub

\( v \) :

Transverse deformation of an arbitrary point

\( u \) :

Axial deformation of an arbitrary point

\( s \) :

Spatial variable along the beam

t :

Time

\( {\text{d}}\eta /{\text{d}}\sigma \) :

Dummy variables standing for ds

\( \rho \) :

Mass density

\( A \) :

Cross-sectional area

\( EI \) :

Flexural rigidity

l :

Length

\( f_{x} /f_{y} \) :

Distributed forces (including inertia forces)

\( \bar{f}_{x} /\bar{f}_{y} \) :

Inertia forces due to rotation of the frame

\( F_{x} /F_{y} \) :

Tip force

\( m_{m} \) :

Mass of mth absorber

\( N_{va} \) :

Number of absorbers

\( z_{m} \) :

Positions of the mth absorber relative to the beam

\( c_{i} \) :

Damping coefficient of ith absorber

\( k_{i} \) :

Spring constant of ith absorber

\( \omega_{\text{c}} \) :

Characteristic frequency

\( \omega_{va,m} \) :

Linear frequency of the mth absorber

\( \mu_{m} \) :

Mass ratio of mth absorber

\( \zeta \) :

Damping factor

\( \beta \) :

Ratio of the hub frequency to the characteristic frequency

\( \tilde{\omega } \) :

Ratio of the absorber frequency to the characteristic frequency

\( \alpha \) :

Ratio of the radius of the hub to the length of the beam

\( \gamma \) :

Kelvin–Voigt material damping coefficient

\( \tau \) :

Dimensionless time

\( \psi_{i} \) :

ith mode shape of nonrotating cantilever beam

\( g_{i} \) :

Generalized coordinate

\( \lambda_{n} \) :

Roots of transcendental equation

\( \omega_{11} \) :

First dimensionless natural frequency

\( \epsilon \) :

Bookkeeping parameter used in perturbation

\( \sigma \) :

Detuning parameter used in perturbation

\( T_{i} \) :

Time scale used in perturbation

References

  1. Bazoune, A.: Survey on modal frequencies of centrifugally stiffened beams. Shock Vib. Digest 37(6), 449–469 (2005)

    Article  Google Scholar 

  2. Lakin, W.D., Nachman, A.: Vibration and buckling of rotating flexible rods at transitional parameter values. J. Eng. Math. 13(4), 339–346 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wright, A.D., Smith, C.E., Thresher, R.W., Wang, J.L.C.: Vibration modes of centrifugally stiffened beams. J. Appl. Mech. 49(1), 197–202 (1982)

    Article  MATH  Google Scholar 

  4. Crespo Da Silva, M.R.M., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J. Struct. Mech. 6(4), 437–448 (1978)

    Article  Google Scholar 

  5. Yoo, H., Shin, S.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212(5), 807–828 (1998)

    Article  Google Scholar 

  6. Bauchau, O.A., Guernsey, D.: On the choice of appropriate bases for nonlinear dynamic modal analysis. J. Am. Helicopter Soc. 38(4), 28–36 (1993)

    Article  Google Scholar 

  7. Jiang, D., Pierre, C., Shaw, S.: The construction of non-linear normal modes for systems with internal resonance. Int. J. Non-Linear Mech. 40(5), 729–746 (2005)

    Article  MATH  Google Scholar 

  8. Hamdan, M., Al-Bedoor, B.: Non-linear free vibrations of a rotating flexible arm. J. Sound Vib. 242(5), 839–853 (2001)

    Article  MATH  Google Scholar 

  9. Turhan, Ö., Bulut, G.: On nonlinear vibrations of a rotating beam. J. Sound Vib. 322(1–2), 314–335 (2009)

    Article  Google Scholar 

  10. Chung, J., Yoo, H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002)

    Article  Google Scholar 

  11. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68(4), 487–504 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chin, C.-M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Isola, F.D., Maurini, C., Porfiri, M.: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Mater. Struct. 13(2), 299–308 (2004)

    Article  Google Scholar 

  14. Johnson, C.D.: Design of passive damping systems. J. Mech. Des. 117(2), 171–176 (1995)

    Article  Google Scholar 

  15. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Article  Google Scholar 

  16. Fulcher, B.A., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136(3) (2014)

  17. Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  18. Khulief, Y.: Vibration suppression in using active modal control. J. Sound Vib. 242(4), 681–699 (2001)

    Article  Google Scholar 

  19. Setola, R.: A spline-based state reconstruction for active vibration control of a flexible beam. J. Sound Vib. 213(5), 777–790 (1998)

    Article  Google Scholar 

  20. Younesian, D., Esmailzadeh, E.: Vibration suppression of rotating beams using time-varying internal tensile force. J. Sound Vib. 330(2), 308–320 (2011)

    Article  Google Scholar 

  21. Basta, E.E., Ghommem, M., Romdhane, L, Abdelkefi, A. Modeling and experimental comparative analysis on the performance of small-scale wind turbines. Wind Struct. Int. J. (2020) (in press)

  22. Enevoldsen, I., Mørk, K.J.: Effects of a vibration mass damper in a wind turbine tower. Mech. Struct. Mach. 24(2), 155–187 (1996)

    Article  Google Scholar 

  23. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4) (2014)

  24. Banerjee, A., Das, R., Calius, E.P.: Waves in structured mediums or metamaterials: a review. Arch. Comput. Methods Eng. 26(4), 1029–1058 (2018)

    Article  MathSciNet  Google Scholar 

  25. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Phys. Uspekhi 10(4), 509–514 (1968)

    Article  Google Scholar 

  26. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  Google Scholar 

  27. Schurig, J.D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    Article  Google Scholar 

  28. Cummer, S.A., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1(3), 1–13 (2016)

    Article  Google Scholar 

  29. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking. Springer, Dordrecht (2013)

  30. Huang, H., Sun, C., Huang, G.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47(4), 610–617 (2009)

    Article  Google Scholar 

  31. Yu, D., Liu, Y., Zhao, H., Wang, G., Qiu, J.: Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B 73(6), 064301 (2006)

    Article  Google Scholar 

  32. Wang, X., Wang, M.Y.: An analysis of flexural wave band gaps of locally resonant beams with continuum beam resonators. Meccanica 51(1), 171–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, L., Hussein, M.I.: Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. J. Appl. Mech. 79(1) (2011)

  34. Banerjee, A.: Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators. Meccanica 55(5), 1181–1191 (2020)

    Article  MathSciNet  Google Scholar 

  35. Zhang, H., Xiao, Y., Wen, J., Yu, D., Wen, X.: Flexural wave band gaps in metamaterial beams with membrane-type resonators: theory and experiment. J. Phys. D Appl. Phys. 48(43), 91–102 (2015)

    Article  Google Scholar 

  36. Chen, J., Sharma, B., Sun, C.: Dynamic behaviour of sandwich structure containing spring-mass resonators. Compos. Struct. 93(8), 2120–2125 (2011)

    Article  Google Scholar 

  37. Pai, P.F.: Metamaterial-based Broadband Elastic Wave Absorber. J. Intell. Mater. Syst. Struct. 21(5), 517–528 (2010)

    Article  Google Scholar 

  38. Casalotti, A., El-Borgi, S., Lacarbonara, W.: Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non-Linear Mech. 98, 32–42 (2018)

    Article  Google Scholar 

  39. Reichl, K.K., Inman, D.J.: Lumped mass model of a 1D metastructure for vibration suppression with no additional mass. J. Sound Vib. 403, 75–89 (2017)

    Article  Google Scholar 

  40. Hu, G., Tang, L., Banerjee, A., Das, R.: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting. J. Vib. Acoust. 139(1), 54–65 (2016)

    Article  Google Scholar 

  41. Zhu, R., Liu, X., Hu, G., Sun, C., Huang, G.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333(10), 2759–2773 (2014)

    Article  Google Scholar 

  42. Calius, E.P., Bremaud, X., Smith, B., Hall, A.: Negative mass sound shielding structures: early results. Physica Status Solidi (B) 246(9), 2089–2097 (2009)

    Article  Google Scholar 

  43. Basta, E.E., Ghommem, M., Emam, S.A.: Vibration suppression and optimization of conserved-mass metamaterial beam. Int. J. Non-Linear Mech. 120, 103360 (2020)

    Article  Google Scholar 

  44. Nayfeh, A.H.: Perturbation Methods. Wiley, Weinheim (2007)

    Google Scholar 

Download references

Funding

This study was funded by the American University of Sharjah (Grant Number EN6001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Emam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients used in Eqs. (19) and (20) are defined as

$$ A_{ij} = \mathop \int \limits_{0}^{1} \left[ {\left( {1 - u} \right) \psi_{j}^{''} - \psi_{j} '} \right] \psi_{i} {\text{d}}u $$
(A.1)
$$ B_{ij} = \mathop \int \limits_{0}^{1} \left[ {\frac{1}{2} \left( {1 - u^{2} } \right)\psi_{j}^{''} - u\psi_{j} '} \right] \psi_{i} {\text{d}}u $$
(A.2)
$$ C_{ijkl} = \mathop \int \limits_{0}^{1} \left( {\psi_{j}^{'} \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l}^{'} {\text{d}}\sigma + \psi_{j}^{'} \psi_{k}^{''} \mathop \int \limits_{u}^{l} \psi_{l} {\text{d}}\sigma - \psi_{j}^{''} \mathop \int \limits_{u}^{1} \mathop \int \limits_{0}^{\sigma } \psi_{k}^{'} \psi_{l}^{'} {\text{d}}\eta {\text{d}}\sigma - \frac{1}{2}\psi_{j}^{'} \psi_{k}^{'} \psi_{l} } \right) \psi_{i} {\text{d}}u $$
(A.3)
$$ D_{ijkl} = \mathop \int \limits_{0}^{1} \left( {\psi_{j}^{'} \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l}^{'} {\text{d}}\sigma - \psi_{j}^{''} \mathop \int \limits_{u}^{1} \mathop \int \limits_{0}^{\sigma } \psi_{k}^{'} \psi_{l}^{'} {\text{d}}\eta {\text{d}}\sigma } \right) \cdot \psi_{i} {\text{d}}u $$
(A.4)
$$ E_{ijkl} = \mathop \int \limits_{0}^{1} \left( {\frac{1}{2}\psi_{j}^{iv} \psi_{k}^{'} \psi_{l}^{'} + 3\psi_{j}^{'} \psi_{k}^{'} \psi_{l}^{'} + \psi_{j}^{''} \psi_{k}^{''} \psi_{l}^{''} } \right) \cdot \psi_{i} {\text{d}}u $$
(A.5)
$$ F_{ijkl} = \mathop \int \limits_{0}^{1} \left( {\frac{1}{2}\psi_{j}^{'} \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l}^{'} {\text{d}}\sigma + \psi_{j}^{'} \psi_{k}^{''} \mathop \int \limits_{u}^{1} \psi_{l} {\text{d}}\sigma - \frac{1}{2}\psi_{j}^{''} \mathop \int \limits_{u}^{1} \mathop \int \limits_{0}^{\sigma } \psi_{k}^{'} \psi_{l}^{'} {\text{d}}\eta {\text{d}}\sigma - \frac{1}{2}\psi_{j} \psi_{k}^{'} \psi_{l}^{'} } \right) \psi_{i} {\text{d}}u $$
(A.6)
$$ G_{ijkl} = \mathop \int \limits_{0}^{1} \left( {\psi_{j}^{'} \psi_{k} - \mathop \int \limits_{0}^{u} \psi_{j}^{'} \psi_{k}^{'} {\text{d}}\sigma - \psi^{\prime\prime}\mathop \int \limits_{u}^{1} \psi_{k} {\text{d}}\sigma } \right) \psi_{i} {\text{d}}u $$
(A.7)
$$ H_{im} = \mathop \int \limits_{0}^{1} \psi_{i} \left\{ {\mu_{m} \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.8)
$$ I_{ijm} = \mathop \int \limits_{0}^{1} \psi_{i} \cdot \left\{ { \left[ {\mu_{m} \cdot \psi_{j} } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.9)
$$ J_{ijm} = \mathop \int \limits_{0}^{1} \psi_{i} \left\{ {\left[ {\mu_{m} \cdot \psi_{j}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u \quad K_{ijm} = \mathop \int \limits_{0}^{1} \psi_{i} \left\{ {\left[ {\mu_{m} \cdot u \cdot \psi_{j}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.10)
$$ L_{ijkm} = \mathop \int \limits_{0}^{1} \psi_{i} \cdot \left\{ {\mu_{m} \cdot \left[ {\psi_{j} \psi_{k}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.12)
$$ M_{ijkm} = \mathop \int \limits_{0}^{1} \psi_{i} \cdot \left\{ {\left[ {\mu_{m} \cdot \mathop \int \limits_{0}^{u} \psi_{j}^{'} \psi_{k} ' } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.13)
$$ N_{ijklm} = \mathop \int \limits_{0}^{1} \psi_{i} \left\{ {\mu_{m} \left[ { - 0.5 \psi_{j}^{'} \psi_{k}^{'} \psi_{l} + \psi_{j}^{'} \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l} {\text{d}}u } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.14)
$$ O_{ijklm} = \mathop \int \limits_{0}^{1} \psi_{i} \left\{ {\left[ {\psi_{j} ' \cdot \mu_{m} \cdot \mathop \int \limits_{0}^{u} \psi_{k} ' \psi_{l} '} \right]\delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.15)
$$ P_{ijklm} = \mathop \int \limits_{0}^{1} \psi_{i} \cdot \left\{ {\left[ {\psi_{j} \cdot \mu_{m} \cdot \psi_{k}^{'} \psi_{l}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.16)
$$ R_{ijkm} = \mathop \int \limits_{0}^{1} \psi_{i} \cdot \left\{ {\left[ {\psi_{j} ' \cdot \mu_{m} \cdot \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l} '} \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.17)

while the coefficients of absorbers are given below

$$ \bar{H}_{im} = \mathop \int \limits_{0}^{1} \left\{ {\mu_{m} \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.18)
$$ \bar{I}_{ijm} = \mathop \int \limits_{0}^{1} \left\{ { \left[ {\mu_{m} \cdot \psi_{j} } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.19)
$$ \bar{J}_{ijm} = \mathop \int \limits_{0}^{1} \left\{ {\left[ {\mu_{m} \cdot \psi_{j}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
$$ \bar{K}_{ijm} = \mathop \int \limits_{0}^{1} \left\{ {\left[ {\mu_{m} \cdot u \cdot \psi_{j}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.20)
$$ \bar{L}_{ijkm} = \mathop \int \limits_{0}^{1} \left\{ {\mu_{m} \cdot \left[ {\psi_{j} \psi_{k}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.21)
$$ \bar{M}_{ijkm} = \mathop \int \limits_{0}^{1} \left\{ {\left[ {\mu_{m} \cdot \mathop \int \limits_{0}^{u} \psi_{j}^{'} \psi_{k} ' } \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.22)
$$ \bar{N}_{ijklm} = \mathop \int \limits_{0}^{1} \left\{ {\mu_{m} \left[ { - 0.5 \psi_{j}^{'} \psi_{k}^{'} \psi_{l} + \psi_{j}^{'} \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l} du } \right] \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.23)
$$ \bar{O}_{ijklm} = \mathop \int \limits_{0}^{1} \left\{ {\left[ {\psi_{j} ' \cdot \mu_{m} \cdot \mathop \int \limits_{0}^{u} \psi_{k} ' \psi_{l} '} \right]\delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.24)
$$ \bar{P}_{ijklm} = \mathop \int \limits_{0}^{1} \left\{ {\left[ {\psi_{j} \cdot \mu_{m} \cdot \psi_{k}^{'} \psi_{l}^{'} } \right] \delta \left( {u - u_{m} } \right)} \right\}{\text{d}}u $$
(A.25)
$$ \bar{R}_{ijkm} = \mathop \int \limits_{0}^{1} \left\{ {\left[ {\psi_{j} ' \cdot \mu_{m} \cdot \mathop \int \limits_{0}^{u} \psi_{k}^{'} \psi_{l} '} \right] \delta \left( {u - u_{m} } \right)} \right\} {\text{d}}u $$
(A.26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basta, E., Ghommem, M. & Emam, S. Vibration suppression of nonlinear rotating metamaterial beams. Nonlinear Dyn 101, 311–332 (2020). https://doi.org/10.1007/s11071-020-05796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05796-z

Keywords

Navigation