Skip to main content
Log in

Waves in Structured Mediums or Metamaterials: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Wave propagation through a structured medium has attracted the attention of researchers for centuries due to its relevance to problems in condensed matter physics, chemistry, optics, phononics, composite, acoustics and mechanics. Wave containing certain band of frequencies can either propagate, known as transmission, or attenuated, known as attenuation band. This band structure for a continuum and its equivalent lumped spring mass model are not identical, although continuum medium is often modelled as a chain of discrete periodic structures because the continuous and discrete is depends on the scale. These band characteristics are dependent on the properties of the units, thus the effects of different parameters, such as damping, stiffness and mass ratios, nonlinearity, on the bandwidth are compared with each other in this review. To cloak, modulate, guide, filter out or attenuate unwanted frequencies from the propagating waves, metamaterials are widely investigated as a special form of the periodic structures from the past 2 decades. The main aim of this review is to compare the bandwidth for one-dimensional periodic structures. Waves through two and three-dimensional periodic medium are not considered in the review because the key band characteristics of periodic system can be perceived in one dimensional. The methods for computing the wave transmission are evaluated in the non-dimensional domain and the band characteristics of different one-dimensional periodic structures are critically assessed in this review. This review will help to the future researchers to choose a proper periodic medium for getting a specific band phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

(data source Ref. [145]). (Color figure online)

Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802–040802

    Google Scholar 

  2. Newton I (1686) Principia-II, Imprimatur S. Pepys. Reg. Soc. Preses, London

    Google Scholar 

  3. Rayleigh JWSB (1896) The theory of sound, vol 2. Macmillan, Basingstoke

    MATH  Google Scholar 

  4. Preuss E, Krahl-Urban B, Butz R (1974) Periodic arrangements of atoms. Vieweg + Teubner Verlag, Wiesbaden, pp 13–18

    Google Scholar 

  5. Yariv A, Yeh P (1984) Optical waves in crystals, vol 10. Wiley, New York

    Google Scholar 

  6. Volz S et al (2016) Nanophononics: state of the art and perspectives. Eur Phys J B 89(1):15

    Google Scholar 

  7. Lee EH, Yang WH (1973) On waves in composite materials with periodic structure. SIAM J Appl Math 25(3):492–499

    MATH  Google Scholar 

  8. Nemat-Nasser S (1972) General variational methods for waves in elastic composites. J Elast 2(2):73–90

    Google Scholar 

  9. Economou E, Sigalas M (1994) Stop bands for elastic waves in periodic composite materials. J Acoust Soc Am 95(4):1734–1740

    Google Scholar 

  10. Sun CT, Achenbach JD, Herrmann G (1968) Time-harmonic waves in a stratified medium propagating in the direction of the layering. J Appl Mech 35(2):408–411

    Google Scholar 

  11. Abrahamson A (1973) The response of periodic structures to aero-acoustic pressures, with particular reference to aircraft skin-rib spar structures. University of Southampton, Southampton

    Google Scholar 

  12. Mead DJ (1973) A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J Sound Vib 27(2):235–260

    MATH  Google Scholar 

  13. Mead DJ (1975) Wave propagation and natural modes in periodic systems: I. Mono-coupled systems. J Sound Vib 40(1):1–18

    MathSciNet  MATH  Google Scholar 

  14. Ewins DJ (1973) Vibration characteristics of bladed disc assemblies. J Mech Eng Sci 15(3):165–186

    Google Scholar 

  15. Deshpande VS, Fleck NA (2000) High strain rate compressive behaviour of aluminium alloy foams. Int J Impact Eng 24(3):277–298

    Google Scholar 

  16. Chen H et al Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics

  17. Kim E et al (2017) Impact and blast mitigation using locally resonant woodpile metamaterials. Int J Impact Eng 101:24–31

    Google Scholar 

  18. Brûlé S et al (2014) Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 112(13):133901

    Google Scholar 

  19. Marco M et al (2016) Large scale mechanical metamaterials as seismic shields. New J Phys 18(8):083041

    Google Scholar 

  20. Krödel S, Thomé N, Daraio C (2015) Wide band-gap seismic metastructures. Extreme Mech Lett 4:111–117

    Google Scholar 

  21. Wagner PR et al (2016) On the feasibility of structural metamaterials for seismic-induced vibration mitigation. Int J Earthq Impact Eng 1(1–2):20–56

    Google Scholar 

  22. Palermo A et al (2016) Seismic surface waves attenuation by buried resonators. In: 2016 10th International congress on advanced electromagnetic materials in microwaves and optics (metamaterials)

  23. Bao J, Shi Z, Xiang H (2012) Dynamic responses of a structure with periodic foundations. J Eng Mech 138(7):761–769

    Google Scholar 

  24. Brun M, Movchan AB, Jones IS (2013) Phononic band gap systems in structural mechanics: finite slender elastic structures and infinite periodic waveguides. J Vib Acoust 135(4):041013–041013-9

    Google Scholar 

  25. Smith DR et al (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184–4187

    Google Scholar 

  26. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    Google Scholar 

  27. Liu Z et al (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Google Scholar 

  28. Liu Z, Chan C, Sheng P (2005) Analytic model of phononic crystals with local resonances. Phys Rev B 71(1):014103

    Google Scholar 

  29. Leonhardt U (2006) Optical conformal mapping. Science 312(5781):1777–1780

    MathSciNet  MATH  Google Scholar 

  30. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312(5781):1780–1782

    MathSciNet  MATH  Google Scholar 

  31. Cai W, Shalaev V (2010) Transformation optics and electromagnetic cloak of invisibility. In: Piegari A, Flory F (eds) Optical metamaterials: fundamentals and applications. Woodhead Publishing, UK, pp 159–195

    Google Scholar 

  32. Lapine M, Shadrivov IV, Kivshar YS (2014) Colloquium: nonlinear metamaterials. Rev Mod Phys 86(3):1093

    Google Scholar 

  33. Steven AC, David S (2007) One path to acoustic cloaking. New J Phys 9(3):45

    Google Scholar 

  34. Chen HY, Chan CT (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91(18):183518

    Google Scholar 

  35. Farhat M et al (2008) Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys Rev Lett 101(13):134501

    Google Scholar 

  36. Brun M, Guenneau S, Movchan AB (2009) Achieving control of in-plane elastic waves. Appl Phys Lett 94(6):061903

    Google Scholar 

  37. Del Vescovo D, Giorgio I (2014) Dynamic problems for metamaterials: review of existing models and ideas for further research. Int J Eng Sci 80:153–172

    MathSciNet  MATH  Google Scholar 

  38. Calius EP et al (2009) Negative mass sound shielding structures: early results. Phys Status Solidi B Basic Solid State Phys 246(9):2089–2097

    Google Scholar 

  39. Hall A et al (2011) Modelling and experimental validation of complex locally resonant structures. N Z Acoust 24(2):12–23

    Google Scholar 

  40. Hall A et al (2014) Development of locally resonant structures for sonic barriers. Build Acoust 21(3):199–220

    Google Scholar 

  41. Wester E et al (2012) Indefinite metamaterials for acoustics. Acoustics Society of NZ, Auckland

    Google Scholar 

  42. Xiao Y, Wen J, Wen X (2012) Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators. J Sound Vib 331(25):5408–5423

    Google Scholar 

  43. Xiuchang H et al (2011) Design and optimization of periodic structure mechanical filter in suppression of foundation resonances. J Sound Vib 330(20):4689–4712

    Google Scholar 

  44. Mitchell SJ, Pandolfi A, Ortiz M (2014) Metaconcrete: designed aggregates to enhance dynamic performance. J Mech Phys Solids 65:69–81

    Google Scholar 

  45. Duan Y et al (2015) Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci Rep 5:12139

    Google Scholar 

  46. Bloch F (1929) Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik 52(7–8):555–600

    MATH  Google Scholar 

  47. Brillouin L (2003) Wave propagation in periodic structures: electric filters and crystal lattices. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  48. Kittel C (2005) Introduction to solid state physics. Wiley, New York

    MATH  Google Scholar 

  49. Tsai J-L, Huang H-H, Sun CT (2010) Multi-displacement continuum model for discrete systems. Int J Mech Sci 52(12):1767–1771

    Google Scholar 

  50. Braga AMB (1992) Floquet waves in anisotropic periodically layered composites. J Acoust Soc Am 91(3):1211

    Google Scholar 

  51. Diaz-Cereceda C, Poblet-Puig J, Rodriguez-Ferran A (2012) The finite layer method for modelling the sound transmission through double walls. J Sound Vib 331(22):4884–4900

    Google Scholar 

  52. Vigran TE (2010) Sound insulation of double-leaf walls—allowing for studs of finite stiffness in a transfer matrix scheme. Appl Acoust 71(7):616–621

    Google Scholar 

  53. Esquivel-Sirvent R, Cocoletzi GH (1994) Band structure for the propagation of elastic waves in superlattices. J Acoust Soc Am 95(1):86–90

    Google Scholar 

  54. Djafari-Rouhani B, Maradudin AA, Wallis RF (1984) Rayleigh waves on a superlattice stratified normal to the surface. Phys Rev B 29(12):6454–6462

    Google Scholar 

  55. López Olazagasti E, Cocoletzi GH, Luis Mochán W (1991) Optical properties of bimetallic superlattices. Solid State Commun 78(1):9–12

    Google Scholar 

  56. Sun CT, Achenbach JD, Herrmann G (1968) Continuum theory for a laminated medium. J Appl Mech 35(3):467–475

    MATH  Google Scholar 

  57. Junyi L, Balint DS (2015) An inverse method to determine the dispersion curves of periodic structures based on wave superposition. J Sound Vib 350:41–72

    Google Scholar 

  58. Bin J, Oates WS, Yousuff Hussaini M (2015) An analysis of a discontinuous spectral element method for elastic wave propagation in a heterogeneous material. Comput Mech 55(4):789–804

    MathSciNet  MATH  Google Scholar 

  59. Yang WH, Lee EH (1974) Modal analysis of Floquet waves in composite materials. J Appl Mech 41(2):429–433

    Google Scholar 

  60. García-Pablos D et al (2000) Theory and experiments on elastic band gaps. Phys Rev Lett 84(19):4349–4352

    Google Scholar 

  61. Orris RM, Petyt M (1974) A finite element study of harmonic wave propagation in periodic structures. J Sound Vib 33(2):223–236

    Google Scholar 

  62. Farzbod F, Leamy MJ (2009) The treatment of forces in Bloch analysis. J Sound Vib 325(3):545–551

    Google Scholar 

  63. Farzbod F, Leamy MJ (2011) Analysis of Bloch’s method and the propagation technique in periodic structures. J Vib Acoust 133(3):031010–031010-7

    Google Scholar 

  64. Srivastava A (2015) Elastic metamaterials and dynamic homogenization: a review. Int J Smart Nano Mater 6(1):41–60

    Google Scholar 

  65. Yao S, Zhou X, Hu G (2008) Experimental study on negative effective mass in a 1D mass–spring system. New J Phys 10(4):043020

    Google Scholar 

  66. Lee SH, Wright OB (2016) Origin of negative density and modulus in acoustic metamaterials. Phys Rev B 93(2):024302

    Google Scholar 

  67. Chan CT (2006) On extending the concept of double negativity to acoustic waves. J Zhejiang Univ 7(1):24–28

    MATH  Google Scholar 

  68. Liu XN et al (2011) An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl Phys Lett 98(25):251907

    Google Scholar 

  69. Baughman RH et al (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392(6674):362–365

    Google Scholar 

  70. Friis EA, Lakes RS, Park JB (1988) Negative Poisson’s ratio polymeric and metallic foams. J Mater Sci 23(12):4406–4414

    Google Scholar 

  71. Kocer C, McKenzie DR, Bilek MM (2009) Elastic properties of a material composed of alternating layers of negative and positive Poisson’s ratio. Mater Sci Eng A 505(1–2):111–115

    Google Scholar 

  72. Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235(4792):1038–1040

    Google Scholar 

  73. Lakes R (1993) Advances in negative Poisson’s ratio materials. Adv Mater 5(4):293–296

    Google Scholar 

  74. Larsen UD, Sigmund O, Bouwstra S (1996) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. In: The ninth annual international workshop on Micro electro mechanical systems, 1996, MEMS’96, proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE

  75. Zheng X et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344(6190):1373–1377

    Google Scholar 

  76. Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. Chemsuschem 4(10):1344–1387

    Google Scholar 

  77. Alderson A, Alderson K (2007) Auxetic materials. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):565–575

    MathSciNet  Google Scholar 

  78. Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5:1052–1063

    Google Scholar 

  79. Evans KE (1991) Auxetic polymers: a new range of materials. Endeavour 15(4):170–174

    Google Scholar 

  80. Yang W et al (2004) Review on auxetic materials. J Mater Science 39(10):3269–3279

    Google Scholar 

  81. Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12(9):617–628

    Google Scholar 

  82. Zampieri A et al (2006) Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Mater Sci Eng C 26(1):130–135

    Google Scholar 

  83. Shen J et al (2012) Mechanical properties of luffa sponge. J Mech Behav Biomed Mater 15:141–152

    Google Scholar 

  84. Pai PF, Peng H (2014) Acoustic metamaterial structures based on multi-frequency vibration absorbers. In: Proceedings of SPIE. The International Society for Optical Engineering

  85. Sun H et al (2014) Acoustic metamaterial with negative parameter. In: Proceedings of SPIE. The International Society for Optical Engineering

  86. Huang HH, Sun CT (2012) Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. J Acoust Soc Am 132:2887

    Google Scholar 

  87. Huang GL, Sun CT (2010) Band gaps in a multiresonator acoustic metamaterial. J Vib Acoust 132(3):031003–031003

    Google Scholar 

  88. Sheng P et al (2003) Locally resonant sonic materials. Physica B 338(1–4):201–205

    Google Scholar 

  89. Sun H, Du X, Frank Pai P (2011) Metamaterial broadband vibration absorbers by local resonance. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

  90. Pope SA, Laalej H (2014) A multi-layer active elastic metamaterial with tuneable and simultaneously negative mass and stiffness. Smart Mater Struct 23(7):075020

    Google Scholar 

  91. Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47(4):610–617

    Google Scholar 

  92. Lu M-H, Feng L, Chen Y-F (2009) Phononic crystals and acoustic metamaterials. Mater Today 12(12):34–42

    Google Scholar 

  93. Sun H et al (2011) Theory and experiment research of metamaterial beams for broadband vibration absorption. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

  94. Sun H et al (2013) Theory and experiment research of metamaterial panel for mechanical waves absorption. In: Collection of technical papers—AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

  95. Huang HH, Sun CT (2009) Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J Phys 11(1):013003

    Google Scholar 

  96. Jeongwon P et al (2012) Determination of effective mass density and modulus for resonant metamaterials. J Acoust Soc Am 132:2793

    Google Scholar 

  97. Islam MT, Newaz G (2012) Metamaterial with mass-stem array in acoustic cavity. Appl Phys Lett 100(1):01194

    Google Scholar 

  98. Yang Z et al (2008) Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett 101(20):204301

    Google Scholar 

  99. Lee SH et al (2009) Acoustic metamaterial with negative density. Phys Lett A 373(48):4464–4469

    Google Scholar 

  100. Fang N et al (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6):452–456

    Google Scholar 

  101. Huang HH, Sun CT (2011) Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young’s modulus. J Mech Phys Solids 59(10):2070–2081

    MATH  Google Scholar 

  102. Sam Hyeon L et al (2009) Acoustic metamaterial with negative modulus. J Phys Condens Matter 21(17):175704

    Google Scholar 

  103. Pasternak E, Dyskin AV, Sevel G (2014) Chains of oscillators with negative stiffness elements. J Sound Vib 333(24):6676–6687

    Google Scholar 

  104. Lee SH et al (2010) Composite acoustic medium with simultaneously negative density and modulus. Phys Rev Lett 104(5):054301

    Google Scholar 

  105. Huang HH, Sun CT (2010) A study of band-gap phenomena of two locally resonant acoustic metamaterials. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 224(3):83–92

    Google Scholar 

  106. Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E 70(5):055602

    Google Scholar 

  107. Marston PL (2014) Comment on “ anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus” [J. Acoust. Soc. Am. 132, 2887–2895 (2012)]. J Acoust Soc Am 135(3):1031–1033

    MathSciNet  Google Scholar 

  108. Sheng P et al (2007) Dynamic mass density and acoustic metamaterials. Physica B 394(2):256–261

    Google Scholar 

  109. Banerjee B (2011) An introduction to metamaterials and waves in composites. Taylor & Fransis, Auckland

    Google Scholar 

  110. Banerjee A, Das R, Calius E (2016) A new approach for determination of the attenuation bandwidth of a resonating metamaterial. Appl Mech Mater 846:264–269

    Google Scholar 

  111. Banerjee A, Das R, Calius EP (2017) Frequency graded 1D metamaterials: a study on the attenuation bands. J Appl Phys 122(7):075101

    Google Scholar 

  112. Mace BR (2014) Discussion of “Dynamics of phononic materials and structures: historical origins, recent progress and future outlook” (Hussein, M. I., Leamy, M. J., and Ruzzene, M., 2014, ASME Appl. Mech. Rev., 66(4), p. 040802). Appl Mech Rev 66(4):045502–045502

    MathSciNet  Google Scholar 

  113. Yong X, Jihong W, Xisen W (2012) Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators. New J Phys 14(3):033042

    Google Scholar 

  114. Zhou X et al (2016) Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators. Appl Phys A 122(4):427

    Google Scholar 

  115. Tan KT, Huang HH, Sun CT (2012) Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl Phys Lett 101(24):241902

    Google Scholar 

  116. Tan KT, Huang HH, Sun CT (2014) Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int J Impact Eng 64:20–29

    Google Scholar 

  117. Xiao Y et al (2013) Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms. J Sound Vib 332(4):867–893

    Google Scholar 

  118. Romero-García V et al (2013) Multi-resonant scatterers in sonic crystals: locally multi-resonant acoustic metamaterial. J Sound Vib 332(1):184–198

    Google Scholar 

  119. Lai Y et al (2011) Hybrid elastic solids. Nat Mater 10(8):620–624

    Google Scholar 

  120. Hu G et al (2016) Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting. J Vib Acoust 139(1):011012–011012-11

    Google Scholar 

  121. Ho KM et al (2003) Broadband locally resonant sonic shields. Appl Phys Lett 83(26):5566–5568

    Google Scholar 

  122. Aydin K et al (2004) Effect of disorder on magnetic resonance band gap of split-ring resonator structures. Opt Express 12(24):5896–5901

    Google Scholar 

  123. Yang Z et al (2010) Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl Phys Lett 96(4):041906

    Google Scholar 

  124. Chang-Lin D, Xiao-Peng Z (2011) Multi-band and broadband acoustic metamaterial with resonant structures. J Phys D Appl Phys 44(21):215402

    Google Scholar 

  125. Matlack KH et al (2016) Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc Natl Acad Sci 30:201600171

    Google Scholar 

  126. Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569

    MATH  Google Scholar 

  127. Langley RS (1994) On the forced response of one-dimensional periodic structures: vibration localization by damping. J Sound Vib 178(3):411–428

    Google Scholar 

  128. Tassilly E (1987) Propagation of bending waves in a periodic beam. Int J Eng Sci 25(1):85–94

    MATH  Google Scholar 

  129. Wang W, Yu J, Tang Z (2008) General dispersion and dissipation relations in a one-dimensional viscoelastic lattice. Phys Lett A 373(1):5–8

    MATH  Google Scholar 

  130. Lee C-Y, Leamy MJ, Nadler JH (2010) Frequency band structure and absorption predictions for multi-periodic acoustic composites. J Sound Vib 329(10):1809–1822

    Google Scholar 

  131. Merheb B et al (2008) Elastic and viscoelastic effects in rubber/air acoustic band gap structures: a theoretical and experimental study. J Appl Phys 104(6):064913

    Google Scholar 

  132. Zhao YP, Wei PJ (2009) The band gap of 1D viscoelastic phononic crystal. Comput Mater Sci 46(3):603–606

    MathSciNet  Google Scholar 

  133. Manconi E, Mace BR (2010) Estimation of the loss factor of viscoelastic laminated panels from finite element analysis. J Sound Vib 329(19):3928–3939

    Google Scholar 

  134. Tisseur F, Meerbergen K (2001) The quadratic Eigenvalue problem. SIAM Rev 43(2):235–286

    MathSciNet  MATH  Google Scholar 

  135. Mead DJ (1970) Free wave propagation in periodically supported, infinite beams. J Sound Vib 11(2):181–197

    Google Scholar 

  136. Sprik R, Wegdam GH (1998) Acoustic band gaps in composites of solids and viscous liquids. Solid State Commun 106(2):77–81

    Google Scholar 

  137. Xin Z et al (2003) Acoustic band gaps for a two-dimensional periodic array of solid cylinders in viscous liquid. J Phys Condens Matter 15(49):8207

    Google Scholar 

  138. Mukherjee S, Lee EH (1975) Dispersion relations and mode shapes for waves in laminated viscoelastic composites by finite difference methods. Comput Struct 5(5–6):279–285

    MATH  Google Scholar 

  139. Mukherjee S, Lee EH (1978) Dispersion relations and mode shapes for waves in laminated viscoelastic composites by variational methods. Int J Solids Struct 14(1):1–13

    MATH  Google Scholar 

  140. Hussein MI (2009) Theory of damped Bloch waves in elastic media. Phys Rev B 80:212301

    Google Scholar 

  141. Hussein MI et al (2010) Band structure of phononic crystals with general damping. J Appl Phys 108(9):093506

    Google Scholar 

  142. Farzbod F, Leamy MJ (2011) Analysis of Bloch’s method in structures with energy dissipation. J Vib Acoust 133(5):051010–051010-8

    Google Scholar 

  143. Palermo A, Marzani A (2015) Phonons in diatomic linear viscoelastic chains. Phys Procedia 70:266–270

    Google Scholar 

  144. Palermo A, Marzani A (2015) Limits of the Kelvin Voigt model for the analysis of wave propagation in monoatomic mass-spring chains. J Vib Acoust 138(1):011022–011022-9

    Google Scholar 

  145. Hussein MI, Frazier MJ (2010) Band structure of phononic crystals with general damping. J Appl Phys 108(9):093506

    Google Scholar 

  146. Hussein MI, Frazier MJ (2013) Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib 332(20):4767–4774

    Google Scholar 

  147. Narisetti RK, Leamy MJ, Ruzzene M (2010) A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J Vib Acoust 132(3):031001

    Google Scholar 

  148. Romeo F, Rega G (2006) Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach. Chaos Solitons Fractals 27(3):606–617

    MathSciNet  MATH  Google Scholar 

  149. Marathe A, Chatterjee A (2006) Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales. J Sound Vib 289(4–5):871–888

    Google Scholar 

  150. Vakakis AF, King ME, Pearlstein AJ (1994) Forced localization in a periodic chain of non-linear oscillators. Int J Non-Linear Mech 29(3):429–447

    MATH  Google Scholar 

  151. Chakraborty G, Mallik AK (2001) Dynamics of a weakly non-linear periodic chain. Int J Non-Linear Mech 36(2):375–389

    MATH  Google Scholar 

  152. Vakakis AF (1992) Non-similar normal oscillations in a strongly non-linear discrete system. J Sound Vib 158(2):341–361

    MathSciNet  MATH  Google Scholar 

  153. Peng ZK, Lang ZQ (2007) Detecting the position of non-linear component in periodic structures from the system responses to dual sinusoidal excitations. Int J Non-Linear Mech 42(9):1074–1083

    Google Scholar 

  154. Nesterenko V (2013) Dynamics of heterogeneous materials. Springer, Berlin

    Google Scholar 

  155. Nesterenko VF (1983) Propagation of nonlinear compression pulses in granular media. J Appl Mech Tech Phys 24(5):733–743

    Google Scholar 

  156. Benjamin TB, Bona JL, Mahony JJ (1972) Model equations for long waves in nonlinear dispersive systems. Philos Trans R Soc Lond Ser A Math Phys Sci 272(1220):47–78

    MathSciNet  MATH  Google Scholar 

  157. Coste C, Falcon E, Fauve S (1997) Solitary waves in a chain of beads under Hertz contact. Phys Rev E 56(5):6104–6117

    Google Scholar 

  158. Nesterenko VF (2001) Nonlinear impulses in particulate materials. Springer, New York, pp 1–136

    Google Scholar 

  159. Daraio C et al (2005) Strongly nonlinear waves in a chain of Teflon beads. Phys Rev E Stat Nonlinear Soft Matter Phys 72(1 Pt 2):016603

    Google Scholar 

  160. Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Commun Math Phys 161(2):391–418

    MathSciNet  MATH  Google Scholar 

  161. Hinch EJ, Saint-Jean S (1989) The fragmentation of a line of balls by an impact. Proc R Soc A Math Phys Eng Sci 1999(455):3201–3220

    MATH  Google Scholar 

  162. Chatterjee A (1999) Asymptotic solution for solitary waves in a chain of elastic spheres. Phys Rev E 59(5):5912–5919

    MathSciNet  Google Scholar 

  163. Job S et al (2005) How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys Rev Lett 94(17):178002

    Google Scholar 

  164. Tournat V, Gusev VE, Castagnède B (2004) Self-demodulation of elastic waves in a one-dimensional granular chain. Phys Rev E 70(5):056603

    Google Scholar 

  165. Nesterenko VF, Herbold EB (2010) Periodic waves in a Hertzian chain. Phys Procedia 3(1):457–463

    Google Scholar 

  166. Lin W-H, Daraio C (2016) Wave propagation in one-dimensional microscopic granular chains. Phys Rev E 94(5):052907

    Google Scholar 

  167. Daraio C et al (2005) Strongly nonlinear waves in a chain of Teflon beads. Phys Rev E 72(1):016603

    Google Scholar 

  168. Kim E, Kim YHN, Yang J (2015) Nonlinear stress wave propagation in 3D woodpile elastic metamaterials. Int J Solids Struct 58:128–135

    Google Scholar 

  169. Leonard A, Daraio C (2012) Stress wave anisotropy in centered square highly nonlinear granular systems. Phys Rev Lett 108(21):214301

    Google Scholar 

  170. Rajesh C, Feng L, Jinkyu Y (2016) Stress wave isolation by purely mechanical topological phononic crystals. Sci Rep 6:30662

    Google Scholar 

  171. Chaunsali R et al (2017) Demonstrating an in situ topological band transition in cylindrical granular chains. Phys Rev Lett 119(2):024301

    Google Scholar 

  172. Nesterenko VF et al (2005) Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys Rev Lett 95(15):158702

    Google Scholar 

  173. Daraio C et al (2006) Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys Rev E 73(2):026610

    Google Scholar 

  174. Musson RW, Carlson W (2016) Finite element study of the effect of material properties on reaction forces produced by solitary wave propagation in granular chains. Granul Matter 18(2):22

    Google Scholar 

  175. Hasan MA et al (2015) Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular media embedded in matrix. Granul Matter 17(1):49–72

    Google Scholar 

  176. Lydon J, Theocharis G, Daraio C (2015) Nonlinear resonances and energy transfer in finite granular chains. Phys Rev E 91(2):023208

    Google Scholar 

  177. Bonanomi L, Theocharis G, Daraio C (2015) Wave propagation in granular chains with local resonances. Phys Rev E 91(3):033208

    Google Scholar 

  178. Liu L et al (2016) Breathers in a locally resonant granular chain with precompression. Physica D 331:27–47

    MathSciNet  MATH  Google Scholar 

  179. Georgiou I (1999) On the global geometric structure of the dynamics of the elastic pendulum. Nonlinear Dyn 18(1):51–68

    MathSciNet  MATH  Google Scholar 

  180. Chen WZ, Hu BB, Zhang H (2002) Interactions between impurities and nonlinear waves in a driven nonlinear pendulum chain. Phys Rev B 65(13):134302

    Google Scholar 

  181. Hodges CH, Woodhouse J (1983) Vibration isolation from irregularity in a nearly periodic structure: theory and measurements. J Acoust Soc Am 74:894

    Google Scholar 

  182. Goffaux C, Sánchez-Dehesa J (2003) Two-dimensional phononic crystals studied using a variational method: application to lattices of locally resonant materials. Phys Rev B 67(14):144301

    Google Scholar 

  183. Bitar D, Kacem N, Bouhaddi N (2017) Investigation of modal interactions and their effects on the nonlinear dynamics of a periodic coupled pendulums chain. Int J Mech Sci 127:130–141

    Google Scholar 

  184. Georgiou IT, Vakakis AF (1996) An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators. Int J Non-Linear Mech 31(6):871–886

    MathSciNet  MATH  Google Scholar 

  185. Khajehtourian R, Hussein MI (2014) Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv 4(12):124308

    Google Scholar 

  186. Lazarov BS, Jensen JS (2007) Low-frequency band gaps in chains with attached non-linear oscillators. Int J Non-Linear Mech 42(10):1186–1193

    Google Scholar 

  187. Banerjee A, Calius EP, Das R (2016) The Effects of cubic stiffness nonlinearity on the attenuation bandwidth of 1D elasto-dynamic metamaterials. In: IMECE 2016, ASME: Pheonix, AZ, USA, p V013T01A020

  188. Banerjee A, Das R, Calius EP (2018) An exact solution technique for impact oscillators. In: Dai L, Jazar RN (eds) Nonlinear approaches in engineering applications: applied mechanics, vibration control, and numerical analysis. Springer, pp 309–332. https://doi.org/10.1007/978-3-319-69480-1_10

    Google Scholar 

  189. Egger P, Caracoglia L (2015) Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation. J Sound Vib 353:38–57

    Google Scholar 

  190. Banerjee A, Das R, Calius EP (2016) Wave transmission through nonlinear impacting metamaterial unit. In: 7th European congress on computational methods in applied sciences and engineering, ECCOMAS congress 2016. National Technical University of Athens

  191. Banerjee A, Das R, Calius EP (2017) Vibration transmission through an impacting mass-in-mass unit, an analytical investigation. Int J Non-Linear Mech 90:137–146

    Google Scholar 

  192. Banerjee A, Calius EP, Das R (2018) An impact based mass-in-mass unit as a building block of wideband nonlinear resonating metamaterial. Int J Non-Linear Mech 101:8–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Das, R. & Calius, E.P. Waves in Structured Mediums or Metamaterials: A Review. Arch Computat Methods Eng 26, 1029–1058 (2019). https://doi.org/10.1007/s11831-018-9268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9268-1

Navigation