Skip to main content
Log in

Lateral pull-in instability of electrostatic MEMS transducers employing repulsive force

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We report on the lateral pull-in in capacitive MEMS transducers that employ a repulsive electrostatic force. The moving element in this system undergoes motion in two dimensions. A two degree-of-freedom mathematical model is developed to investigate the pull-in quantitatively. The nonlinear electrostatic force, which is a vector function of two spatial coordinates, is determined by calculating the potential energy of the system using a boundary element approach. The equilibrium points are found by numerically solving the nonlinear coupled static equations. A stability analysis reveals that depending on the values of the lateral and transverse stiffness, the system undergoes different bifurcations when the voltage on the side electrodes is considered as the control parameter. Three-dimensional bifurcation diagrams are presented and discussed to elucidate the nonlinear nature of the system. The results establish important criteria for designing MEMS transducers with reliable and robust performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Guney, M.G., Li, X., Chung, V.P.J., paramesh, J., Mukherjee, T., Fedder, G.K.: High dynamic range CMOS-MEMS capacitive accelerometer array. In: 2018 IEEE Micro Electro Mechanical Systems (MEMS), pp. 992–995 (2018)

  2. Mukhiya, R., Agarwal, R., Badjatya, S., Garg, M., Gaikwad, P., Sinha, S., Singh, A.K., Gopal, R.: Design, modelling and system level simulations of DRIE-based MEMS differential capacitive accelerometer. Microsyst. Technol. 25(9), 3521–3532 (2019)

    Article  Google Scholar 

  3. Yang, C., Tang, S., Tavassolian, I.: Utilizing gyroscopes towards the automatic annotation of seismocardiograms. IEEE Sens. J. 17(7), 2129–2136 (2017)

    Article  Google Scholar 

  4. Sheikhaleh, A., Jafari, K., Abedi, K.: Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system. IEEE Sens. J. 19(1), 144–150 (2019)

    Article  Google Scholar 

  5. Pallay, M., Miles, R.N., Towfighian, S.: A tunable electrostatic MEMS pressure switch. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2956377

    Article  Google Scholar 

  6. Wang, Z., Zhang, Q., Wang, W., Han, J.: Dynamic analysis of a micro beam-based tactile sensor actuated by fringing electrostatic fields. Micromachines (2019). https://doi.org/10.3390/mi10050324

    Article  Google Scholar 

  7. Miles, R.N., Cui, W., Su, Q.T., Homentcovschi, D.: A MEMS low-noise sound pressure gradient microphone with capacitive sensing. J. Microelectromech. Syst. 24(1), 241–248 (2015)

    Article  Google Scholar 

  8. Ozdogan, M., Towfighian, S., Miles, R.N.: Fabrication and experimental characterization of a MEMS microphone using electrostatic levitation. In: 2019 IEEE sensors conference (2019)

  9. Pallay, M., Towfighian, S.: A reliable MEMS switch using electrostatic levitation. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5053090

    Article  Google Scholar 

  10. Iannacci, J.: Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37, 62–71 (2014)

    Article  Google Scholar 

  11. Ramini, A., Bellaredj, M.L.F., Hafiz, M.A.A., Younis, M.I.: Experimental investigation of snap-through motion of in-plane MEMS shallow arches under electrostatic excitation. J. Micromech. Microeng. (2015). https://doi.org/10.1088/0960-1317/26/1/015012

    Article  Google Scholar 

  12. Derakhshani, M., Berfield, T.A.: Snap-through and mechanical strain analysis of a MEMS bistable vibration energy harvester. Shock Vib. (2019). https://doi.org/10.1155/2019/6743676

    Article  Google Scholar 

  13. Maani Miandoab, E., Nejat Pishkenari, H., Meghdari, A., Fathi, M.: A general closed-form solution for the static pull-in voltages of electrostatically actuated MEMS/NEMS. Physica E Low-dimens. Syst. Nanostruct. 90, 7–12 (2017)

    Article  Google Scholar 

  14. SoltanRezaee, M., Afrashi, M.: Modeling the nonlinear pull-in behavior of tunable nano-switches. Int. J. Eng. Sci. 109, 73–87 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ozdogan, M., Towfighian, S., Miles, R.N.: Modeling and characterization of a pull-in free MEMS microphone. IEEE Sens. J. (2020). https://doi.org/10.1109/JSEN.2020.2976527

    Article  Google Scholar 

  16. Godara, R.K., Joglekar, M.M.: Alleviation of residual oscillations in electrostatically actuated variable-width microbeams using a feedforward control strategy. Microsyst. Technol. 23, 4441–4457 (2016)

    Article  Google Scholar 

  17. Godara, R.K., Joglekar, M.M.: Suppression of contact bounce in beam-type microelectromechanical switches using a feedforward control scheme. J. Vib. Control 24(23), 5502–5513 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lee, K.B., Cho, Y.: Laterally driven electrostatic repulsive-force microactuators using asymmetric field distribution. J. Microelectromech. Syst. 10(1), 128–136 (2001)

    Article  Google Scholar 

  19. Towfighian, S., Seleim, A., Abdel-Rahman, E.M., Heppler, G.R.: A large-stroke electrostatic micro-actuator. J. Micromech. Microeng. (2011). https://doi.org/10.1088/0960-1317/21/7/075023

    Article  Google Scholar 

  20. Park, S., Khater, M., Effa, D., Abdel-Rahman, E., Yavuz, M.: Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current. J. Micromech. Microeng. (2017). https://doi.org/10.1088/1361-6439/aa77bd

    Article  Google Scholar 

  21. Ak, C., Yildiz, A.: A novel closed-form expression obtained by using differential evolution algorithm to calculate pull-in voltage of MEMS cantilever. J. Microelectromech. Syst. 27(3), 392–397 (2018)

    Article  Google Scholar 

  22. Zehnder, A.T., Rand, R.H., Krylov, S.: Locking of electrostatically coupled thermo-optically driven MEMS limit cycle oscillators. Int. J. Non-Linear Mech. 102, 92–100 (2018)

    Article  Google Scholar 

  23. Caruntu, D.I., Botello, M.A., Reyes, C.A., Beatriz, J.S.: Voltage-amplitude response of superharmonic resonance of second order of electrostatically actuated MEMS cantilever resonators. J. Comput. Nonlinear Dyn. (2019). https://doi.org/10.1115/1.4042017

    Article  Google Scholar 

  24. Guha, K., Laskar, N.M., Gogoi, H.J., Chanda, S., Baishnab, K.L., Rao, K.S., Maity, N.P.: An improved analytical model for static pull-in voltage of a flexured MEMS switch. Microsyst. Technol. (2018). https://doi.org/10.1007/s00542-018-3911-5

    Article  Google Scholar 

  25. Younis, Mohammad I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Book  Google Scholar 

  26. Zhang, W., Yan, H., Peng, Z., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  Google Scholar 

  27. Bian, W., Zhao, J., You, Z.: Low voltage, high speed and small area in-plane MEMS switch. J. Micromech. Microeng. (2019). https://doi.org/10.1088/1361-6439/ab1635

    Article  Google Scholar 

  28. Firouzi, B., Zamanian, M.: The effect of capillary and intermolecular forces on instability of the electrostatically actuated microbeam with T-shaped paddle in the presence of fringing field. Appl. Math. Model. 71, 243–268 (2019)

    Article  MathSciNet  Google Scholar 

  29. Sharma, A.K., Godara, R.K., Joglekar, M.M.: Static and DC dynamic pull-in analysis of curled microcantilevers with a compliant support. Microsyst. Technol. 25(3), 965–975 (2019)

    Article  Google Scholar 

  30. Nayfeh, A.H., Younis, M.I., Eihab, A.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1), 153–163 (2007)

    Article  Google Scholar 

  31. Rocha, L.A., Cretu, E., Wolffenbuttel, R.F.: Behavioural analysis of the pull-in dynamic transition. J. Micromech. Microeng. 14, 37–42 (2004)

    Article  Google Scholar 

  32. Sharma, M., Sarraf, E.H., Cretu, E.: A novel dynamic pull-in MEMS gyroscope. Procedia Eng. 25, 55–58 (2011)

    Article  Google Scholar 

  33. Pallay, M., Daeichin, M., Towfighian, S.: Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation. Nonlinear Dyn. 89(2), 1525–1538 (2017)

    Article  Google Scholar 

  34. Pallay, M., Towfighian, S.: Feasibility study of a capacitive MEMS filter using electrostatic levitation. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Aug 2019. American Society of Mechanical Engineers (2019)

  35. Daeichin, M., Ozdogan, M., Towfighian, S., Miles, R.N.: Dynamic response of a tunable MEMS accelerometer based on repulsive force. A Phys. Sens. Actuators 289, 34–43 (2019)

    Article  Google Scholar 

  36. Ozdogan, M., Daeichin, M., Ramini, A., Towfighian, S.: Parametric resonance of a repulsive force MEMS electrostatic mirror. Sens. Actuators A Phys. 265, 20–31 (2017)

    Article  Google Scholar 

  37. Miles, R.N.: A compliant capacitive sensor for acoustics: avoiding electrostatic forces at high bias voltages. IEEE Sens. J. 18(14), 5691–5698 (2018)

    Article  Google Scholar 

  38. Miles, R.N.: Physical Approach to Engineering Acoustics. Springer, New York (2019)

    Google Scholar 

  39. Daeichin, M., Miles, R.N., Towfighian, S.: Experimental characterization of the electrostatic levitation force in MEMS transducers. J. Vib. Acoust. (2020). https://doi.org/10.1115/1.4046625

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of this study by the National Science Foundation (NSF) through Grant ECCS 1608692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrzad Towfighian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daeichin, M., Miles, R. & Towfighian, S. Lateral pull-in instability of electrostatic MEMS transducers employing repulsive force. Nonlinear Dyn 100, 1927–1940 (2020). https://doi.org/10.1007/s11071-020-05614-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05614-6

Keywords

Navigation