Skip to main content
Log in

Nonlinear thermo-mechanical behaviour of MEMS resonators

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper investigates the static deflection as well as the nonlinear resonant behaviour of an electrically actuated MEMS resonator subject to a temperature rise. The deformable electrode is actuated by a harmonic AC load superimposed to a constant DC load. Taking into account thermal effects, the size-dependent equation of motion is derived by means of the extended Hamilton’s principle together with the modified couple stress theory. The effect of temperature rise on the mechanical properties of the microresonator is also taken into account. Based on the Galerkin method, a high-dimensional discretised model of the microresonator is obtained which is solved by means of the pseudo-arclength continuation technique. In particular, the non-trivial deflected configuration of the deformable electrode, as well as the static pull-in voltage, is obtained. The nonlinear resonant behaviour of the system is analyzed when the system is actuated by the AC voltage near the primary resonance. The effect of temperature rise on the static and dynamic responses of the system is highlighted. Furthermore, it is shown that when the mechanical properties are considered temperature-dependent, rather than constant, the behaviour of the system changes significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman EM, Nayfeh AH (2003) Secondary resonances of electrically actuated resonant microsensors. J Micromech Microeng 13:491–501

    Article  Google Scholar 

  • Aboelkassem Y, Nayfeh AH, Ghommem M (2010) Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst Technol 16:1749–1755

    Article  Google Scholar 

  • Arani AG, Jafari GS and Kolahchi R (2016) Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst Technol 1–27. doi:10.1007/s00542-016-3095-9

  • Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105.

    Article  MathSciNet  Google Scholar 

  • Belardinelli P, Brocchini M, Demeio L et al (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32

    Article  MathSciNet  Google Scholar 

  • Belardinelli P, Lenci S, Demeio L (2015) Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects. Int J Dyn Control 3:157–172

    Article  MathSciNet  Google Scholar 

  • Bourouina H, Yahiaoui R, Yusifli E et al (2016) Shear effect on dynamic behavior of microcantilever beam with manufacturing process defects. Microsyst Technol 1–6. doi:10.1007/s00542-016-3078-x

  • Cao L, Fan S, Guo Z et al (2016) A method to simulate the vibrating characters of the resonator for resonant MEMS gyroscope. Microsyst Technol 22:2315–2327

    Article  Google Scholar 

  • Chae J-H, Lee J-Y, Kang S-W (1999) Measurement of thermal expansion coefficient of poly-Si using microgauge sensors. Sens Actuators A 75:222–229

    Article  Google Scholar 

  • Chaterjee S, Pohit G (2009) A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J Sound Vib 322:969–986

    Article  Google Scholar 

  • Cho SW, Chasiotis I (2007) Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 47:37–49

    Article  Google Scholar 

  • Do C, Lishchynska M, Delaney K et al (2012) Generalized closed-form models for pull-in analysis of micro cantilever beams subjected to partial electrostatic load. Sens Actuators A: Phys 185:109–116

    Article  Google Scholar 

  • De SK, Aluru NR (2006) Theory of thermoelastic damping in electrostatically actuated microstructures. Phys Rev B 74:144305

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2016) Viscoelasticity effects on resonant response of a shear deformable extensible microbeam. Nonlinear Dyn 87(1):391–406

    Article  MATH  Google Scholar 

  • Ghayesh MH, Amabili M (2013) Steady-state transverse response of an axially moving beam with time-dependent axial speed. Int J Nonlinear Mech 49:40–49

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H (2015) Nonlinear dynamics of microplates. Int J Eng Sci 86:60–73

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Kazemirad S, Darabi MA et al (2012) Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system. Arch Appl Mech 82:317–331

    Article  MATH  Google Scholar 

  • Ghayesh M, Farokhi H, Amabili M (2013a) Coupled nonlinear size-dependent behaviour of microbeams. Appl Phys A 112:329–338

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013b) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155

    Article  Google Scholar 

  • Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Article  Google Scholar 

  • Gong Y, Bian X, Guojin C et al (2016) MEMS stochastic model order reduction method based on polynomial chaos expansion. Microsyst Technol 22:993–1003

    Article  Google Scholar 

  • Li Y, Packirisamy M, Bhat RB (2008) Shape optimizations and static/dynamic characterizations of deformable microplate structures with multiple electrostatic actuators. Microsyst Technol 14:255–266

    Article  Google Scholar 

  • Li Q, Fan S, Tang Z et al (2012) Non-linear dynamics of an electrothermally excited resonant pressure sensor. Sens Actuators A 188:19–28

    Article  Google Scholar 

  • Li W, Pan M, Wu X et al (2016) Comparison analysis of energy loss between micro clamped–clamped and clamped-free beam in vertical motion flux modulation magnetic sensor. Microsyst Technol 1–7. doi:10.1007/s00542-016-2993-1

  • Liao J, Wang J, Li N et al (2016) Resonance frequency tracking and measuring system for micro-electromechanical cantilever array sensors. Microsyst Technol 1–9. doi:10.1007/s00542-016-2930-3

  • Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B 61:5600–5609

    Article  Google Scholar 

  • Manoach E, Ribeiro P (2004) Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams. Int J Mech Sci 46:1589–1606

    Article  MATH  Google Scholar 

  • Mestrom RMC, Fey RHB, van Beek JTM et al (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142:306–315

    Article  Google Scholar 

  • Mojahedi M, Moghimi Zand M, Ahmadian MT (2010) Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. Appl Math Model 34:1032–1041

    Article  MATH  MathSciNet  Google Scholar 

  • Mukherjee B, Swamy KBM, Sen S (2016) Dynamic characteristics of voltage induced reciprocated bending in double cantilever configuration of asymmetric comb drive MEMS. Microsyst Technol 22:1089–1103

    Article  Google Scholar 

  • Okada Y, Tokumaru Y (1984) Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys 56:314–320

    Article  Google Scholar 

  • Ouakad HM (2016) Simple and accurate analytical solution to the post-buckling response of an electrostatically actuated MEMS curled cantilever. Microsyst Technol 22:2251–2258

    Article  Google Scholar 

  • Pasharavesh A, Ahmadian MT, Zohoor H (2016) Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits. Microsyst Technol 1–18. doi:10.1007/s00542-016-3024-y

  • Pradeep V, Ganesan N, Bhaskar K (2007) Vibration and thermal buckling of composite sandwich beams with viscoelastic core. Compos Struct 81:60–69

    Article  Google Scholar 

  • Rahaeifard M, Kahrobaiyan MH, Asghari M et al (2011) Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens Actuators A 171:370–374

    Article  Google Scholar 

  • Rahaeifard M, Kahrobaiyan MH, Ahmadian MT et al (2012) Size-dependent pull-in phenomena in nonlinear microbridges. Int J Mech Sci 54:306–310

    Article  Google Scholar 

  • Rezazadeh G, Fathalilou M, Shabani R (2009) Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. Microsyst Technol 15:1785–1791

    Article  Google Scholar 

  • Rhoads JF, Kumar V, Shaw SW et al (2013) The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. Int J Nonlinear Mech 55:79–89

    Article  Google Scholar 

  • Rivadeneyra A, Soto-Rueda JM, O’Keeffe R et al (2016) Tunable MEMS piezoelectric energy harvesting device. Microsyst Technol 22:823–830

    Article  Google Scholar 

  • Saxena S, Sharma R, Pant BD (2016) Design and development of guided four beam cantilever type MEMS based piezoelectric energy harvester. Microsyst Technol 1–9. doi:10.1007/s00542-016-2940-1

  • Sharnappa Ganesan N, Sethuraman R (2007) Dynamic modeling of active constrained layer damping of composite beam under thermal environment. J Sound Vib 305:728–749

    Article  Google Scholar 

  • Tada H, Kumpel AE, Lathrop RE et al (2000) Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Appl Phys 87:4189–4193

    Article  Google Scholar 

  • Tajaddodianfar F, Yazdi MRH, Pishkenari HN (2016) Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst Technol 1–14. doi:10.1007/s00542-016-2947-7

  • Tian WC, Chen ZQ, Cao YR (2016) Analysis and test of a new MEMS micro-actuator. Microsyst Technol 22:943–952

    Article  Google Scholar 

  • Treyssède F (2007) Prebending effects upon the vibrational modes of thermally prestressed planar beams. J Sound Vib 307:295–311

    Article  Google Scholar 

  • Wu G (2005) The analysis of dynamic instability and vibration motions of a pinned beam with transverse magnetic fields and thermal loads. J Sound Vib 284:343–360

    Article  Google Scholar 

  • Wu BS, Yu YP, Li ZG et al (2013) An analytical approximation method for predicting static responses of electrostatically actuated microbeams. Int J Nonlinear Mech 54:99–104

    Article  Google Scholar 

  • Xi Z, Cao Y, Yu P et al (2016) The simulation and visual test contact process of a MEMS inertial switch with flexible electrodes. Microsyst Technol 22:2035–2042

    Article  Google Scholar 

  • Xiang H, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos B Eng 39:292–303

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC et al (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, New York

    Book  Google Scholar 

  • Younis MI (2014) Analytical expressions for the electrostatically actuated curled beam problem. Microsyst Technol 21:1709–1717

    Article  Google Scholar 

  • Younis MI (2015) Multi-mode excitation of a clamped–clamped microbeam resonator. Nonlinear Dyn 80:1531–1541

    Article  MathSciNet  Google Scholar 

  • Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12:672–680

    Article  Google Scholar 

Download references

Acknowledgements

The financial support to this research by the start-up grant of the University of Adelaide is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, H., Ghayesh, M.H. Nonlinear thermo-mechanical behaviour of MEMS resonators. Microsyst Technol 23, 5303–5315 (2017). https://doi.org/10.1007/s00542-017-3381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3381-1

Keywords

Navigation