Skip to main content
Log in

Dynamics of neurons in the pre-Bötzinger complex under magnetic flow effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Breathing is a complex rhythmic movement. The dynamics of neuron firing activity has important implications in understanding the causes of pathological respiratory rhythm. Studies on electrophysiology have shown that the internal and external bioelectricity of nervous system may play important roles on firing activities of neuron. In this paper, the magnetic flow is added as a new variable to the Butera model to investigate the effect of electromagnetic induction on neuronal activities. The effect of magnetic flow on membrane potential is described by imposing additive memristive current on the membrane variable. The memristive current depends on the variation of magnetic flow. Direct and alternating currents of external stimulus are also added to the membrane potential. Dynamics of this modified model is discussed to consider the influence of magnetic flux on the membrane potential under different conditions of direct and alternating currents. The results show that the magnetic flux makes the pre-BötC neuron oscillate under a lower value of the direct current. Regular bursting and the mixed modes bursting types can be observed by changing the external condition and stimulus. Further studies on the combination effects of the parameter \({k_1}\) and the direct and alternating currents are performed by two-parameter bifurcation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lindsey, B.G., Rybak, I.A., Smith, J.C.: Computational models and emergent properties of respiratory neural networks. Compr. Physiol 2(3), 1619–1670 (2012)

    Google Scholar 

  2. Rekling, J.C., Feldman, J.L.: Pre-B\(\ddot{o}\)tzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60(1), 385–405 (1998)

    Article  Google Scholar 

  3. Ramirez, J.M., Quellmalz, U.J.A., Richter, D.W.: Postnatal changes in the mammalian respiratory network as revealed by the transverse brain stem slice of mouse. J. Physiol. 491(3), 799–812 (1996)

    Article  Google Scholar 

  4. Feldman, J.L., Smith, J.C.: Cellular mechanisms underlying modulation of breathing patterns in mammals. Ann. N. Y. Acad. Sci. 563, 114–130 (1989)

    Article  Google Scholar 

  5. Gray, P.A., Rekling, J.C., Bocchiaro, C.M., Feldman, J.L.: Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the Pre-B\(\ddot{o}\)tzinger complex. Science 286(5444), 1566–1568 (1999)

    Article  Google Scholar 

  6. Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76, 066203 (2007)

    Article  Google Scholar 

  7. Perc, M.: Stochastic resonance on weakly paced scale-free networks. Phys. Rev. E 78, 036105 (2008)

    Article  Google Scholar 

  8. Gosak, M., Marhl, M., Perc, M.: Pacemaker-guided noise-induced spatial periodicity in excitable media. Physica D 238, 506–515 (2009)

    Article  MathSciNet  Google Scholar 

  9. Yilmaz, E., Baysal, V., Ozer, M., Perc, M.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Phys. A 444, 538–546 (2016)

    Article  MathSciNet  Google Scholar 

  10. Butera, R.J., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-B\(\ddot{o}\)tzinger complex: I. J. Neurophysiol. 82(1), 382–397 (1999)

    Article  Google Scholar 

  11. Butera, R.J., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-B\(\ddot{o}\)tzinger complex: II. J. Neurophysiol. 82(1), 398–415 (1999)

    Article  Google Scholar 

  12. Best, J., Borisyuk, A., Rubin, J., Terman, D., Wechselberger, M.: The dynamic range of bursting in a model respiratory pacemaker network. SIAM J. Appl. Dyn. Syst. 4(4), 1107–1139 (2005)

    Article  MathSciNet  Google Scholar 

  13. Han, X., Jiang, B., Bi, Q.: 3-torus, quasi-periodic bursting, symmetric subHopf/fold-cycle bursting, subHopf/fold-cycle bursting and their relation. Nonlinear Dyn. 61(4), 667–676 (2010)

    Article  MathSciNet  Google Scholar 

  14. Zhao, Z., Jia, B., Gu, H.: Bifurcation and enhancement of neuronal firing induced by negative feedback. Nonlinear Dyn. 86(3), 1–12 (2016)

    Article  Google Scholar 

  15. Gu, H., Pan, B., Chen, G., Duan, L.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)

    Article  MathSciNet  Google Scholar 

  16. Duan, L., Zhai, D., Tang, X.: Bursting induced by excitatory synaptic coupling in the pre-B\(\ddot{o}\)tzinger complex. Int. J. Bifurc. Chaos 22(5), 367–369 (2012)

    Article  Google Scholar 

  17. Zhang, H.H., Wang, Q.Y., Perc, M., Chen, G.R.: Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun. Nonlinear Sci. Numer. Simulat. 18, 601–615 (2013)

    Article  MathSciNet  Google Scholar 

  18. Sun, X.J., Lei, J.Z., Perc, M., Kurths, J., Chen, G.R.: Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21, 016110 (2011)

    Article  Google Scholar 

  19. Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6, e15851 (2011)

    Article  Google Scholar 

  20. Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85, 061905 (2012)

    Article  Google Scholar 

  21. Sun, X., Li, G.: Synchronization transitions induced by partial time delay in a excitatory–inhibitory coupled neuronal network. Nonlinear Dyn. 89(4), 2509–2520 (2017)

    Article  MathSciNet  Google Scholar 

  22. Upadhyay, R.K., Mondal, A., Teka, W.W.: Mixed mode oscillations and synchronous activity in noise induced modified Morris–Lecar neural system. Int. J. Bifurc. Chaos 27(05), 1730019 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wang, H., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85(2), 881–891 (2016)

    Article  MathSciNet  Google Scholar 

  24. Zhan, F., Liu, S.: Response of electrical activity in an improved neuron model under electromagnetic radiation and noise. Front. Comput. Neurosci. 11, 107 (2017)

    Article  Google Scholar 

  25. Ge, M., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–523 (2018)

    Article  Google Scholar 

  26. Xu, Y., Ying, H., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  27. Lu L., Jia Y., Liu W., et al.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity, 7628537 (2017)

  28. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  29. Stuchly, M., Dawson, T.W.: Interaction of low-frequency electric and magnetic fields with the human body. Proc. IEEE 88(5), 643–664 (2000)

    Article  Google Scholar 

  30. Focke, F., Schuermann, D., Kuster, N., Schär, P.: DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 683(1–2), 74–83 (2009)

    Google Scholar 

  31. Berzhanskaya, J., Gorchetchnikov, A., Schiff, S.J.: Switching between gamma and theta: dynamic network control using subthreshold electric fields. Neurocomputing 70(10–12), 2091–2095 (2007)

    Article  Google Scholar 

  32. Durand, D.M., Bikson, M.: Suppression and control of epileptiform activity by electrical stimulation: a review. Proc. IEEE 89(7), 1065–1082 (2001)

    Article  Google Scholar 

  33. Gluckman, B.J., Nguyen, H., Schiff, S.J.: Adaptive electric field control of epileptic seizures. J. Neurosci. 21(2), 590–600 (2001)

    Article  Google Scholar 

  34. Li, J.J., Wu, Y., Du, M., Wei, M.: Dynamic behavior in firing rhythm transition of neurons under electromagnetic radiation. Acta Phys. Sin. 64(3), 214–220 (2015)

    Google Scholar 

  35. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  36. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  37. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(20), 1335–1350 (2010)

    Article  Google Scholar 

  38. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 237–238 (2010)

    Article  Google Scholar 

  39. Bao, B., Ma, Z., Xu, J., Liu, Z., Xu, Q.: A a simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)

    Article  Google Scholar 

  40. Bao, B.C., Shi, G.D., Xu, J.P., Liu, Z., Pan, S.H.: Dynamics analysis of chaotic circuit with two memristors. China Sci. 54(8), 2180–2187 (2011)

    Article  Google Scholar 

  41. Ren, W., Hu, S., Zhang, B., Wang, F., Gong, Y., Xu, J.: Period-adding bifurcation with chaos in the interspike intervals generated by an experimental neural pacemaker. Int. J. Bifurc. Chaos 7(8), 1867–1872 (1997)

    Article  Google Scholar 

  42. Li, L., Gu, H., Yang, M., Liu, Z., Ren, W.: A series of bifurcation scenarios in the firing pattern transitions in an experimental neural pacemaker. Int. J. Bifurc. Chaos 14(5), 1813–1817 (2004)

    Article  Google Scholar 

  43. Lu, B., Liu, S., Liu, X., Jiang, X., Wang, X.: Bifurcation and spike adding transition in Chay-Keizer model. Int. J. Bifurc. Chaos 26(5), 1650090 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China under Grant No. 11472009, Construction Plan for Innovative Research Team of North China University of Technology under Grant No. XN018010, and Scientific Research for Undergraduate of North China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Duan.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of this paper.

Appendix

Appendix

For \(x\in \{mP,m,h,n\}\), the function of \(x_{\infty }(v)\) takes the form \(x_{\infty }(v)=\{1+\exp (v-\theta _{x}/\sigma _{x})\}^{-1}\). For \(x\in \{h,n\}\), the function of \(\tau _{x}(v)\) takes the form \(\tau _{x}(v)=\tau _{x}/\cosh [(v-\theta _{x})/2\sigma _{x}]\). The parameter values are shown in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Cao, Q., Wang, Z. et al. Dynamics of neurons in the pre-Bötzinger complex under magnetic flow effect. Nonlinear Dyn 94, 1961–1971 (2018). https://doi.org/10.1007/s11071-018-4468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4468-7

Keywords

Navigation