Skip to main content
Log in

Analytic study on interactions between periodic solitons with controllable parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Soliton interactions occur when two solitons are close enough. In general, periodic oscillations can be presented during soliton interactions. The periodic oscillations will lead to the soliton distortion, which is necessary to carry out the effective control. In this paper, interactions between periodic solitons with controllable parameters are investigated analytically. One- and two-soliton solutions for the nonlinear Schrödinger equation are derived by using the Hirota’s bilinear method. According to analytic solutions, the influences of each parameter on period interactions between solitons are discussed, and the method of how to control the cycle of interactions is suggested. Results in this paper can be used for the theoretical guidance of how to make the soliton transmission more efficient and more fidelity, and are of great significance for optical fiber communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)

    Article  MathSciNet  Google Scholar 

  2. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  Google Scholar 

  3. Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

  4. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  Google Scholar 

  5. Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84(2), 1107–1112 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84, 669–676 (2016)

    Article  MathSciNet  Google Scholar 

  7. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)

    Article  MathSciNet  Google Scholar 

  8. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  Google Scholar 

  9. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. 84, 1883–1900 (2016)

    Article  MathSciNet  Google Scholar 

  10. Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49, 391 (2017)

    Article  Google Scholar 

  11. Khodadad, F.S., Nazari, F., Eslami, M., Rezazadeh, H.: Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity. Opt. Quantum Electron. 49, 384 (2017)

    Article  Google Scholar 

  12. Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D., Belic, M.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68, 525–530 (2014)

    Article  Google Scholar 

  13. Eslami, M., Neirameh, A.: New exact solutions for higher order nonlinear Schrödinger equation in optical fibers. Opt. Quantum Electron. 50, 47 (2017)

    Article  Google Scholar 

  14. Eslami, M.: Trial solution technique to chiral nonlinear Schrodinger’s equation in (1+2)-dimensions. Nonlinear Dyn. 85, 813–816 (2016)

    Article  MathSciNet  Google Scholar 

  15. Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83, 731–738 (2016)

    Article  MathSciNet  Google Scholar 

  16. Eslami, M., Mirzazadeh, M.: First integral method to look for exact solutions of a variety of Boussinesq-like equations. Ocean Eng. 83, 133–137 (2014)

    Article  Google Scholar 

  17. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    Article  MathSciNet  Google Scholar 

  18. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  Google Scholar 

  19. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Article  Google Scholar 

  20. Liu, W.J., Pang, L.H., Han, H.N., Bi, K., Lei, M., Wei, Z.Y.: Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 9(18), 5806–5811 (2017)

    Article  Google Scholar 

  21. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23, 171 (1973)

    Article  Google Scholar 

  22. Liu, W.J., Pang, L.H., Han, H.N., Liu, M.L., Lei, M., Fang, S.B., Teng, H., Wei, Z.Y.: Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express 25(3), 2950–2959 (2017)

    Article  Google Scholar 

  23. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1–2), 591–596 (2016)

    Article  MathSciNet  Google Scholar 

  24. Liu, W.J., Pang, L.H., Han, H.N., Shen, Z.W., Lei, M., Teng, H., Wei, Z.Y.: Dark solitons in \(\text{ WS }_{2}\) erbium-doped fiber lasers. Photonics Res. 4(3), 111–114 (2016)

    Article  Google Scholar 

  25. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85(2), 731–737 (2016)

    Article  MathSciNet  Google Scholar 

  26. Pushkarov, D., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354 (1996)

    Article  Google Scholar 

  27. Mahalingam, A., Porsezian, K.: Propagation of dark solitons with higher-order effects in optical fibers. Phys. Rev. E 64, 046608 (2001)

    Article  Google Scholar 

  28. Liu, W.J., Liu, M.L., Lei, M., Fang, S.B., Wei, Z.Y.: Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser. IEEE J. Quantum Electron. 24, 0901105 (2017)

    Google Scholar 

  29. Artigas, D., Torner, L., Torres, J.P., Akhmedievb, N.N.: Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity. Opt. Commun. 143(4), 322–328 (1997)

    Article  Google Scholar 

  30. Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89(4), 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  31. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, New York (1995)

    MATH  Google Scholar 

  32. Hesegawa, A., Kodama, Y.: Solitons in Optical Communication. Oxford University Press, Oxford (1995)

    Google Scholar 

  33. Liu, W.J., Pang, L.H., Yan, H., Lei, M.: Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn. 84(4), 2205–2209 (2016)

    Article  MathSciNet  Google Scholar 

  34. Liu, W.J., Zhang, Y.J., Pang, L.H., Yan, H., Ma, G.L., Lei, M.: Study on the control technology of optical solitons in optical fibers. Nonlinear Dyn. 86, 1069–1073 (2016)

    Article  Google Scholar 

  35. Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96(4), 042201 (2017)

    Article  MathSciNet  Google Scholar 

  36. Huang, Q.M., Gao, Y.T., Hu, L.: Breather-to-soliton transition for a sixth-order nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 75, 135–140 (2018)

    Article  MathSciNet  Google Scholar 

  37. Sun, W.R.: Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers. Ann. Phys. 529, 1600227 (2017)

    Article  Google Scholar 

  38. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  MathSciNet  Google Scholar 

  39. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MathSciNet  Google Scholar 

  40. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)

    Article  MathSciNet  Google Scholar 

  41. Ganapathy, R., Porsezian, K., Hasegawa, A.: Soliton interaction under soliton dispersion management. IEEE J. Quantum Electron. 44, 383–390 (2008)

    Article  Google Scholar 

  42. Morita, I., Tanaka, K., Edagawa, N.: 40 Gb/s single-channel soliton transmission over transoceanic distances by reducing Gordon–Haus timing jitter and soliton–soliton interaction. J. Lightwave Technol. 17, 2506 (1999)

    Article  Google Scholar 

  43. Pinto, A.N., Agrawal, G.P.: Nonlinear interaction between signal and noise in optical fibers. J. Lightwave Technol. 26, 1847–1853 (2008)

    Article  Google Scholar 

  44. Peng, G.D., Ankiewicz, A.: Fundamental and second-order solition transmission in nonlinear directional fiber couplers. J. Nonlinear Opt. Phys. 1, 135–150 (1992)

    Article  Google Scholar 

  45. Friberg, S.R.: Demonstration of colliding-soliton all-optical switching. Appl. Phys. Lett. 63, 429–431 (1993)

    Article  Google Scholar 

  46. Hirota, R.: Exact solution of the Kortewegde Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  Google Scholar 

  47. Nimmo, J.J.C., Freeman, N.C.: The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A 17, 1415 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11674036), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833ZK08) and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05). This work of Qin Zhou was supported by the National Natural Science Foundation of China (Grant Nos. 11705130 and 1157149), and this author was also sponsored by the Chutian Scholar Program of Hubei Government in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Zhou or Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Triki, H., Zhou, Q. et al. Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn 94, 703–709 (2018). https://doi.org/10.1007/s11071-018-4387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4387-7

Keywords

Navigation