Skip to main content
Log in

Nonlinear control for soliton interactions in optical fiber systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The realization of soliton control and soliton quality balance is one of the key research contents of optical communications. In order to better reflect the nonlinear interactions during soliton transmission and investigate their change rule, it is necessary to use the transmission model based on nonlinear interaction of solitons to study their characteristics. In this paper, we consider the fifth-order nonlinear Schrödinger equation with variable dispersion and nonlinear effects to realize soliton control and improve soliton quality. Analytic solutions of this equation are presented by the bilinear method, and the transmission and interaction characteristics of solitons in real fiber systems are studied. Influences of dispersion and nonlinear effects on them are analyzed. The nonlinear control based on the linear optical fiber is realized by studying the interactions between two adjacent solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goulielmakis, E., Schultze, M., Hofstetter, M., Yakovlev, V.S., Gagnon, J., Uiberacker, M., Aquila, A.L., Gullikson, E.M., Attwood, D.T., Kienberger, R., Krausz, F., Kleineberg, U.: Single-cycle nonlinear optics. Science 320, 1614–1617 (2008)

    Article  Google Scholar 

  2. Liao, S.: Single-cycle nonlinear optics. Appl. Math. Comput. 147, 499–513 (2004)

    MathSciNet  Google Scholar 

  3. Trombettoni, A., Merzi, A.: Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001)

    Article  Google Scholar 

  4. Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998)

    Article  MathSciNet  Google Scholar 

  5. Braun, O.M., Kivshar, Y.S.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

    Article  Google Scholar 

  6. Lorenz, H.W., Nusse, H.E.: Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin’s nonlinear accelerator model reconsidered. Chaos Soliton Fract. 13, 957–965 (2002)

    Article  MathSciNet  Google Scholar 

  7. Yang, J.K., Tan, Y.: Fractal dependence of vector-soliton collisions in birefringent fibers. Phys. Lett. A 280, 129–138 (2001)

    Article  Google Scholar 

  8. Cantu, S.H., Venkatramani, A.V., Xu, W.C., Zhou, L., Jelenkovic, B., Lukin, M.D., Vuletic, V.: Repulsive photons in a quantum nonlinear medium. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-0917-6

    Article  Google Scholar 

  9. Wang, H.T., Wen, X.Y.: Soliton elastic interactions and dynamical analysis of a reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Nonlinear Dyn. 100, 1571–1587 (2020)

    Article  Google Scholar 

  10. Wu, J.J., Liu, Y.Q., Piao, L.H., Zhuang, J.H., Wang, D.S.: Nonlinear localized waves resonance and interaction solutions of the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 100, 1527–1541 (2020)

    Article  Google Scholar 

  11. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method. Commun. Nonlinear Sci. 18, 1915–925 (2013)

    Article  MathSciNet  Google Scholar 

  12. Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. 10, 680–690 (2009)

    Article  MathSciNet  Google Scholar 

  13. Yan, Z.Y.: New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations. Phys. Lett. A 292, 1–2 (2001)

    Article  MathSciNet  Google Scholar 

  14. Wazwaz, A.M.: New integrable (2+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients: multiple optical kink wave solutions. Optik 216, 164640 (2020)

    Article  Google Scholar 

  15. Wazwaz, A.M., El-Tantawy, S.A.: Optical Gaussons for nonlinear logarithmic Schrödinger equations via the variational iteration method. Optik 180, 414–418 (2019)

    Article  Google Scholar 

  16. Wazwaz, A.M.: Bright and dark optical solitons for (2+1)-dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes. Optik 192, 162948 (2019)

    Article  Google Scholar 

  17. Wazwaz, A.M.: The integrable time-dependent sine-Gordon equation with multiple optical kink solutions. Optik 182, 605–610 (2019)

    Article  Google Scholar 

  18. Wazwaz, A.M.: Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation. Optik 172, 622–627 (2018)

    Article  Google Scholar 

  19. Yang, X.F., Huo, D.X., Hong, X.K.: Periodic transmission and control of optical solitons in optical fibers. Optik 216, 164752 (2020)

    Article  Google Scholar 

  20. Yan, Y.Y., Liu, W.J., Zhou, Q., Biswas, A.: Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg–Landau equation influenced by higher-order effects and nonlinear gain. Nonlinear Dyn. 99, 1313–1319 (2020)

    Article  Google Scholar 

  21. Liu, W.J., Zhang, Y.J., Luan, Z.T., Zhou, Q., Mirzazadeh, M., Ekici, M., Biswas, A.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96, 729–736 (2019)

    Article  Google Scholar 

  22. Liu, X.Y., Triki, H., Zhou, Q., Liu, W.J., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94, 703–709 (2018)

    Article  Google Scholar 

  23. Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  24. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  Google Scholar 

  25. Wazwaz, A.M., Kaur, L.: Complex simplified Hirota’s forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV–Sine–Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    Article  Google Scholar 

  26. Kaur, L., Wazwaz, A.M.: Painleve analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    Article  Google Scholar 

  27. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  28. Paredes, A., Olivieri, D.N., Michinel, H.: From optics to dark matter: a review on nonlinear Schrödinger–Poisson systems. Physica D 403, 132301 (2020)

    Article  MathSciNet  Google Scholar 

  29. Song, Y.F., Shi, X.J., Wu, C.F., Tang, D.Y., Zhang, H.: Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019)

    Article  Google Scholar 

  30. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  31. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  32. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  33. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  34. Lan, Z.Z.: Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 102, 106132 (2020)

    Article  MathSciNet  Google Scholar 

  35. Musammil, N.M., Subha, P.A., Nithyanandan, K.: Phase dynamics of inhomogeneous Manakov vector solitons. Phys. Rev. E 100, 012213 (2019)

    Article  Google Scholar 

  36. Huang, Q.M., Gao, Y.T., Hu, L.: Bilinear forms, modulational instability and dark solitons for a fifth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous optical fiber. Appl. Math. Comput. 352, 270–278 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    Article  MathSciNet  Google Scholar 

  38. Hao, R.Y., Li, L., Li, Z.H., Zhou, G.S.: Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 70, 066603 (2004)

    Article  Google Scholar 

  39. Liu, W.J., Tian, B., Zhang, H.Q.: Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Phys. Rev. E 78, 066613 (2008)

    Article  Google Scholar 

  40. Huang, Q.M.: Integrability and dark soliton solutions for a high-order variable coefficients nonlinear Schrödinger equation. Appl. Math. Lett. 93, 29–33 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chaoqing Dai for his help. The work of Wenjun Liu was supported by the National Natural Science Foundation of China (11674036, 11875008); Beijing Youth Top-notch Talent Support Program (2017000026833ZK08); Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications (IPOC2019ZZ01); The Fundamental Research Funds for the Central Universities (500419305). This work was also funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under Grant No. (KEP-65-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Hu, C., Zhou, Q. et al. Nonlinear control for soliton interactions in optical fiber systems. Nonlinear Dyn 101, 1215–1220 (2020). https://doi.org/10.1007/s11071-020-05865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05865-3

Keywords

Navigation