Skip to main content
Log in

Optical soliton shaping in dispersion decreasing fibers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Optical soliton shaping is the process of changing the waveform of transmitted pulses, and has been applied in optical communication systems to make the pulse fit in their communication channels. In this paper, the concept of optical soliton shaping is introduced in dispersion decreasing fibers with the sine profile. Pulse propagation in dispersion decreasing fibers, which can be described by the variable coefficient higher-order nonlinear Schrödinger equation with the effects of third-order dispersion, self-steepening, and stimulated Raman scattering, is investigated. With the symbolic computation and Hirota method, analytic soliton solutions for the equation are derived. Through adjusting corresponding parameters for obtained solutions, we present the optical soliton shaping, and the influences of parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  Google Scholar 

  2. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    Article  MathSciNet  Google Scholar 

  3. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  MathSciNet  Google Scholar 

  5. Wang, Y.Y., Dai, C.Q.: Elastic interactions between multi-valued foldons and anti-foldons for the (2\(+\)1)-dimensional variable coefficient Broer–Kaup system in water waves. Nonlinear Dyn. 74, 429–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tang, B., Li, D.J., Tang, Y.: Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky–Moriya interaction. Chaos 24, 023113 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dai, C.Q., Zhu, H.P.: Superposed Akhmediev breather of the (3\(+\)1)-dimensional generalized nonlinear Schrödinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)

    Article  MathSciNet  Google Scholar 

  8. Dai, C.Q., Zhu, H.P.: Superposed Kuznetsov–Ma solitons in a two-dimensional graded-index grating waveguide. J. Opt. Soc. Am. B 30, 3291–3297 (2013)

    Article  MathSciNet  Google Scholar 

  9. Liu, W.J., Tian, B., Lei, M.: Dromion-like structures in the variable coefficient nonlinear Schrödinger equation. Appl. Math. Lett. 30, 28–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

  11. Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3\(+\)1)-dimensional cubic-quintic Schrodinger equation in PT-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov–Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862 (2014)

    Article  Google Scholar 

  13. Dai, C.Q., Xu, Y.J.: Exact solutions for a Wick-type stochastic reaction Duffing equation. Appl. Math. Model. 39, 7420–7426 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hasgawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Article  Google Scholar 

  15. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)

    Article  Google Scholar 

  16. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2007)

    MATH  Google Scholar 

  17. Vijayalekshmi, S., Rajan, M.S.M., Mahalingam, A., Uthayakumar, A.: Investigation on nonautonomous soliton management in generalized external potentials via dispersion and nonlinearity. Indian J. Phys. 89, 957–965 (2015)

    Article  Google Scholar 

  18. Zhong, H., Tian, B., Jiang, Y., Sun, H., Zhen, H.L., Sun, W.R.: On the amplification of unchirped soliton pulses in a dispersion-decreasing fiber. Opt. Quantum Electron. 47, 139–147 (2015)

    Article  Google Scholar 

  19. Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)

    Article  MathSciNet  Google Scholar 

  20. Rajan, M.S.M., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)

  21. Li, Q., Huang, H.: Effective pulse compression in dispersion decreasing and nonlinearity increasing fibers. Opt. Commun. 342, 36–43 (2015)

    Article  Google Scholar 

  22. Wang, Y.Y., Dai, D., Dai, C.Q.: Nonautonomous spatiotemporal solitons in inhomogeneous nonlinear media with linear and nonlinear gain/loss and different distributed diffraction/dispersion. Laser Phys. 24, 105402 (2014)

    Article  MathSciNet  Google Scholar 

  23. Li, Q., Nakkeeran, K., Wai, P.K.A.: Ultrashort pulse train generation using nonlinear optical fibers with exponentially decreasing dispersion. J. Opt. Soc. Am. B 31, 1786–1792 (2014)

    Article  Google Scholar 

  24. Korobko, D.A., Okhotnikov, O.G., Zolotovskii, I.O.: High-repetition-rate pulse generation and compression in dispersion decreasing fibers. J. Opt. Soc. Am. B 30, 2377–2386 (2013)

    Article  Google Scholar 

  25. Liu, W.J., Pang, L.H., Han, H.N., Tian, W.L., Chen, H., Lei, M., Yan, P.G., Wei, Z.Y.: Generation of dark solitons in erbium-doped fiber lasers based \(Sb_{2}Te_{3}\) saturable absorbers. Opt. Express 23, 26023 (2015)

    Article  Google Scholar 

  26. Liu, W.J., Tian, B., Zhen, H.L., Jiang, Y.: Analytic study on solitons in gas-filled hollow-core photonic crystal fibers. Europhys. Lett. 100, 64003 (2012)

    Article  Google Scholar 

  27. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the Editors and Referees for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 61205064, by the Visiting Scholar Funds of the Key Laboratory of Optoelectronic Technology and Systems under Grant No. 0902011812401_5, Chongqing University, and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2015ZC07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Pang, L., Yan, H. et al. Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn 84, 2205–2209 (2016). https://doi.org/10.1007/s11071-016-2639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2639-y

Keywords

Navigation