Skip to main content

Advertisement

Log in

Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper pays close attention to the problem of energy-to-peak state estimation for a class of neural networks under switching mechanism. Persistent dwell-time switching rule, which is more generic than average dwell-time and dwell-time, is employed. In addition, the particular concept for persistent dwell-time, including the specific distinction between sample time and switching instant, is given. The measured output subject to quantized signals is used for alleviating the overhead about communication channel. At the same time, the random packet losses with its probability obeying Bernoulli distribution is considered. By the aid of a suitable mode-dependent Lyapunov function and switched system theory, the expected mode-dependent estimator is developed to guarantee that the resulting estimation error system is mean-square exponentially stable and meets a prescribed energy-to-peak performance index. In the end, the applicability of the proposed method is illustrated by utilizing a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn, C.K.: An \(H_{\infty }\) approach to stability analysis of switched hopfield neural networks with time-delay. Nonlinear Dyn. 60(4), 703–711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahn, C.K.: Switched exponential state estimation of neural networks based on passivity theory. Nonlinear Dyn. 67(1), 573–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ali, M.S., Saravanan, S., Cao, J.: Finite-time boundedness, \(L_2\)-gain analysis and control of Markovian jump switched neural networks with additive time-varying delays. Nonlinear Anal. Hybrid Syst. 23, 27–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ata, R.: Artificial neural networks applications in wind energy systems: a review. Renew. Sustain. Energy Rev. 49, 534–562 (2015)

    Article  Google Scholar 

  5. Cao, J., Rakkiyappan, R., Maheswari, K., Chandrasekar, A.: Exponential \(H_{\infty }\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci. China Technol. Sci. 59(3), 387–402 (2016)

    Article  Google Scholar 

  6. Chan, J.C., Peter, W.T.: A novel, fast, reliable data transmission algorithm for wireless machine health monitoring. IEEE Trans. Reliab. 58(2), 295–304 (2009)

    Article  Google Scholar 

  7. Chen, G., Xia, J., Zhuang, G.: Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components. J. Frankl. Inst. 353(9), 2137–2158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G., Xia, J., Zhuang, G., Zhang, B.: \(l_{2}\) gain analysis and state feedback stabilization of switched systems with multiple additive time-varying delays. J. Frankl. Inst. 354(16), 7326–7345 (2017)

    Article  MATH  Google Scholar 

  9. Chen, G., Xia, J., Zhuang, G., Zhao, J.: Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components. Appl. Math. Comput. 316, 1–17 (2018)

    MathSciNet  Google Scholar 

  10. Fu, M., de Souza, C.E.: State estimation for linear discrete-time systems using quantized measurements. Automatica 45(12), 2937–2945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, H., Xia, J., Zhuang, G., Wang, Z., Sun, Q.: Nonfragile finite-time extended dissipative control for a class of uncertain switched neutral systems. Complexity, Article ID 6581308 (2017)

  13. Hespanha, J.P.: Uniform stability of switched linear systems: extensions of lasalle’s invariance principle. IEEE Trans. Autom. Control 49(4), 470–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the Hindmarsh–Rose neuron with time delays. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1953–1958 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lakshmanan, S., Prakash, M., Lim, C.P., Rakkiyappan, R., Balasubramaniam, P., Nahavandi, S.: Synchronization of an inertial neural network with time-varying delays and its application to secure communication. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 195–207 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liang, K., Dai, M., Shen, H., Wang, J., Wang, Z., Chen, B.: \(l_{2}-l_{\infty }\) synchronization for singularly perturbed complex networks with semi-Markov jump topology. Appl. Math. Comput. 321, 450–462 (2018)

    MathSciNet  Google Scholar 

  17. Liu, C., Liu, W., Liu, X., Li, C., Han, Q.: Stability of switched neural networks with time delay. Nonlinear Dyn. 79(3), 2145–2154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, G., Xu, S., Wei, Y., Qi, Z., Zhang, Z.: New insight into reachable set estimation for uncertain singular time-delay systems. Appl. Math. Comput. 320, 769–780 (2018)

    MathSciNet  Google Scholar 

  19. Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19(5), 667–675 (2006)

    Article  MATH  Google Scholar 

  20. Long, Y., Yang, G.-H.: Fault detection for networked control systems subject to quantisation and packet dropout. Int. J. Syst. Sci. 44(6), 1150–1159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, C., Li, T., Zhang, J.: Consensus control for leader-following multi-agent systems with measurement noises. J. Syst. Sci. Complex. 23(1), 35–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, C., Zhang, J.: On formability of linear continuous-time multi-agent systems. J. Syst. Sci. Complex. 25(1), 13–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Men, Y., Huang, X., Wang, Z., Shen, H., Chen, B.: Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations. Neurocomputing 291, 207–214 (2018)

    Article  Google Scholar 

  24. Niu, B., Ahn, C.K., Li, H., Liu, M.: Adaptive control for stochastic switched nonlower triangular nonlinear systems and its application to a one-link manipulator. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2685638

    Google Scholar 

  25. Paek, S.-K., Kim, L.-S.: A real-time wavelet vector quantization algorithm and its vlsi architecture. IEEE Trans. Control Syst. Technol. 10(3), 475–489 (2000)

    Google Scholar 

  26. Qi, W., Kao, Y., Gao, X., Wei, Y.: Controller design for time-delay system with stochastic disturbance and actuator saturation via a new criterion. Appl. Math. Comput. 320, 535–546 (2018)

    MathSciNet  Google Scholar 

  27. Rakkiyappan, R., Maheswari, K., Sivaranjani, K.: Non-weighted \(H_{\infty }\) state estimation for discrete-time switched neural networks with persistent dwell time switching regularities based on finslers lemma. Neurocomputing 260, 131–141 (2017)

    Article  Google Scholar 

  28. Rakkiyappan, R., Sivaranjani, K.: Sampled-data synchronization and state estimation for nonlinear singularly perturbed complex networks with time-delays. Nonlinear Dyn. 84(3), 1623–1636 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rehan, M., Mobeen, M.B., Tufail, M., Ahn, C.K.: A novel method for guaranteed overflow oscillation elimination in digital filters subject to quantization. IEEE Trans. Circuits Syst. II Exp. Briefs (2018). https://doi.org/10.1109/TCSII.2018.2810070

  30. Shen, H., Huo, S., Cao, J., Huang, T.: Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2799929

    Google Scholar 

  31. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control (2017). https://doi.org/10.1109/TAC.2017.2774006

    Google Scholar 

  32. Shen, H., Su, L., Wu, Z.-G., Park, J.H.: Reliable dissipative control for Markov jump systems using an event-triggered sampling information scheme. Nonlinear Anal. Hybrid Syst. 25, 41–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, H., Xing, M., Huo, S., Wu, Z.-G., Park, J.H.: Finite-time \(H_{\infty }\) asynchronous state estimation for discrete-time fuzzy Markov jump neural networks with uncertain measurements. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.01.017

    Google Scholar 

  34. Shen, M., Nguang, S.K., Ahn, C.K.: Quantized \(H_{\infty }\) output control of linear Markov jump systems in finite frequency domain. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2798159

    Google Scholar 

  35. Su, L., Shen, H.: Fault-tolerant mixed \(H_{\infty }\) passive synchronization for delayed chaotic neural networks with sampled-data control. Complexity 21(6), 246–259 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)

    MathSciNet  Google Scholar 

  37. Wang, Z.: A numerical method for delayed fractional-order differential equations. J. Appl. Math. Article ID 256071 (2013)

  38. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Huang, X., Zhou, J.: A numerical method for delayed fractional-order differential equations: based on GL definition. Appl. Math. Inf. Sci. 7(2), 525–529 (2013)

    Article  MathSciNet  Google Scholar 

  40. Wang, Z., Wang, X., Li, Y., Huang, X.: Stability and hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifur. Chaos 27(13), 1750209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, Z.-G., Shi, P., Su, H., Chu, J.: Delay-dependent stability analysis for switched neural networks with time-varying delay. IEEE Trans. Syst. Man Cybern. Part B 41(6), 1522–1530 (2011)

    Article  Google Scholar 

  42. Xia, J., Chen, G., Sun, W.: Extended dissipative analysis of generalized Markovian switching neural networks with two delay components. Neurocomputing 260, 275–283 (2017)

    Article  Google Scholar 

  43. Xia, J., Gao, H., Liu, M., Zhuang, G., Zhang, B.: Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems. J. Frankl. Inst. (2018). https://doi.org/10.1016/j.jfranklin.2018.02.017

    MathSciNet  Google Scholar 

  44. Zhang, L., Zhu, Y., Shi, P., Lu, Q.: Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  45. Zhang, L., Zhu, Y., Zheng, W.X.: State estimation of discrete-time switched neural networks with multiple communication channels. IEEE Trans. Cybern. 47(4), 1028–1040 (2017)

    Article  Google Scholar 

  46. Zhang, M., Shi, P., Liu, Z., Ma, L., Su, H.: \(H_{\infty }\) filtering for discrete-time switched fuzzy systems with randomly occurring time-varying delay and packet dropouts. Signal Proc. 143, 320–327 (2018)

    Article  Google Scholar 

  47. Zhang, Z., Shao, H., Wang, Z., Shen, H.: Reduced-order observer design for the synchronization of the generalized Lorenz chaotic systems. Appl. Math. Comput. 218(14), 7614–7621 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Zhou, J., Sang, C., Li, X., Fang, M., Wang, Z.: \(\cal{H}_{\infty }\) consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)

    MathSciNet  Google Scholar 

  49. Zhu, Y., Zhang, L., Ning, Z., Zhu, Z., Shammakh, W., Hayat, T.: \(H_{\infty }\) state estimation for discrete-time switching neural networks with persistent dwell-time switching regularities. Neurocomputing 165, 414–422 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 61304066,61573008,61473178,61703004, the Natural Science Foundation of Anhui Province under Grant 1708085MF165, the SDUST Research Fund under Grant 2014TDJH102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Huang, Z., Yang, X. et al. Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts. Nonlinear Dyn 93, 2249–2262 (2018). https://doi.org/10.1007/s11071-018-4322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4322-y

Keywords

Navigation