Skip to main content
Log in

Switched exponential state estimation of neural networks based on passivity theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new exponential state estimation method is proposed for switched Hopfield neural networks based on passivity theory. Through available output measurements, the main purpose is to estimate the neuron states such that the estimation error system is exponentially stable and passive from the control input to the output error. Based on augmented Lyapunov–Krasovskii functional, Jensen’s inequality, and linear matrix inequality (LMI), a new delay-dependent state estimator for switched Hopfield neural networks can be achieved by solving LMIs, which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving delay-dependent LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, M.M., Jin, L., Homma, N.: Static and Dynamic Neural Networks. Wiley-Interscience, New York (2003)

    Book  Google Scholar 

  2. Hopfield, J.J.: Neurons with grade response have collective computational properties like those of a two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  3. Farra, N.H., Mhaskar, P., Christofides, P.D.: Output feedback control of switched nonlinear systems using multiple Lyapunov functions. Syst. Control Lett. 54, 1163–1182 (2005)

    Article  MATH  Google Scholar 

  4. Liberzon, D.: Switching in Systems and Control: Foundations and Applications. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  5. Zong, G.D., Xu, S.Y., Wu, Y.Q.: Robust \(\mathcal{H}_{\infty}\) stabilization for uncertain switched impulsive control systems with state delay: an LMI approach. Nonlinear Anal. Hybrid Syst 2, 1287–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hespanha, J.P., Morse, A.S.: Switching between stabilizing controllers. Automatica 38, 1905–1917 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Niamsup, P.: Stability of time-varying switched systems with time-varying delay. Nonlinear Anal. Hybrid Syst 3, 631–639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Liu, X.Z., Shen, X.M.: Stability of switched systems with time delay. Nonlinear Anal. Hybrid Syst 1, 44–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tsividis, Y.: Switched neural networks. United States Patent, Patent number 4873661 (1989)

  10. Brown, T.X.: Neural networks for switching. IEEE Commun. Mag. 27, 72–81 (1989)

    Article  Google Scholar 

  11. Muselli, M.: Gene selection through switched neural networks. In: Network Tools and Applications in Biology Workshop, pp. 27–28 (2003)

    Google Scholar 

  12. Huang, H., Qu, Y., Li, H.: Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty. Phys. Lett. A 345, 345–354 (2005)

    Article  MATH  Google Scholar 

  13. Lou, X.Y., Cui, B.T.: Delay-dependent criteria for robust stability of uncertain switched Hopfield neural networks. Int. J. Autom. Comput. 4, 304–314 (2007)

    Article  Google Scholar 

  14. Ahn, C.K.: An \(\mathcal{H}_{\infty}\) approach to stability analysis of switched Hopfield neural networks with time-delay. Nonlinear Dyn. 60, 703–711 (2010)

    Article  MATH  Google Scholar 

  15. Jin, L., Nikiforuk, P.N., Gupta, M.M.: Adaptive control of discrete time nonlinear systems using recurrent neural networks. IEE Proc., Control Theory Appl. 141, 169–176 (1994)

    Article  MATH  Google Scholar 

  16. Wang, Z., Ho, D.W.C., Liu, X.: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16, 279–284 (2005)

    Article  Google Scholar 

  17. He, Y., Wang, Q.G., Wu, M., Lin, C.: Delay-dependent state estimation for delayed neural networks. IEEE Trans. Neural Netw. 17, 1077–1081 (2006)

    Article  MATH  Google Scholar 

  18. Liu, Y., Wang, Z., Liu, X.: Design of exponential state estimators for neural networks with mixed time delays. Phys. Lett. A 364, 401–412 (2007)

    Article  Google Scholar 

  19. Wang, Z., Liu, Y., Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw. 22, 41–48 (2009)

    Article  Google Scholar 

  20. Balasubramaniam, P., Lakshmanan, S., Theesar, S.J.S.: State estimation for markovian jumping recurrent neural networks with interval timevarying delays. Nonlinear Dyn. 60, 661–675 (2010)

    Article  MATH  Google Scholar 

  21. Willems, J.C.: Dissipative dynamical systems, part I: General theory. Arch. Ration. Mech. Anal. 45, 321–351 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Byrnes, C.I., Isidori, A., Willem, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system. IEEE Trans. Autom. Control 36, 1228–1240 (1991)

    Article  MATH  Google Scholar 

  23. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishinan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  24. Noldus, E.: Stabilization of a class of distributional convolutional equations. Int. J. Control 41, 947–960 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. The Mathworks Inc., Natick (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Ki Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, C.K. Switched exponential state estimation of neural networks based on passivity theory. Nonlinear Dyn 67, 573–586 (2012). https://doi.org/10.1007/s11071-011-0010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0010-x

Keywords

Navigation