Skip to main content
Log in

A novel approach with smallest transition matrix for milling stability prediction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The introduction of chatter limits the processing efficiency of milling. Chatter prediction is an off-line strategy to select chatter-free cutting parameters. This paper presents a novel method for prediction of milling chatter which aims to reduce the dimension of transition matrix of the discrete map, where the eigenvalues of the transition matrix determine the system stability by using Floquet theory. A linear weight function is introduced when the weighted residual method is applied to the delay differential equation on discrete time intervals. Thus the displacement item can be removed from the state vectors. When the number of discrete intervals is fixed, it is concluded that the transition matrix obtained by the proposed method is the smallest among the time-domain methods. Meanwhile, the acceleration continuity condition is naturally satisfied on discrete time nodes which endows the method with competitive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibraion, and CNC Design. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. Cirp Ann. Manuf. Technol. 44(1), 357–362 (1995)

    Article  Google Scholar 

  3. Altintas, Y., Stepan, G., Merdol, D., Dombovari, Z.: Chatter stability of milling in frequency and discrete time domain. CIRP J. Manuf. Sci. Technol. 1(1), 35–44 (2008)

    Article  Google Scholar 

  4. Asl, F.M., Ulsoy, A.G.: Analysis of a system of linear delay differential equations. J. Dyn. Syst. Meas. Control 125(2), 215 (2003)

    Article  Google Scholar 

  5. Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng. 125(2), 220–225 (2003)

    Article  Google Scholar 

  6. Butcher, E.A., Bobrenkov, O.A.: On the Chebyshev spectral continuous time approximation for constant and periodic delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1541–1554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Butcher, E.A., Bobrenkov, O.A., Bueler, E., Nindujarla, P.: Analysis of milling stability by the chebyshev collocation method: algorithm and optimal stable immersion levels. J. Comput. Nonlinear Dyn. 4(3), 031003 (2009)

    Article  Google Scholar 

  8. Ding, Y., Zhu, L., Zhang, X., Ding, H.: A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf 50(5), 502–509 (2010)

    Article  Google Scholar 

  9. Ding, Y., Zhu, L., Zhang, X., Ding, H.: Numerical integration method for prediction of milling stability. J. Manuf. Sci. Eng. 133(3), 031005 (2011)

    Article  Google Scholar 

  10. Ding, Y., Zhu, L., Zhang, X., Ding, H.: Stability analysis of milling via the differential quadrature method. J. Manuf. Sci. Eng. 135(4), 044502 (2013)

    Article  Google Scholar 

  11. Eksioglu, C., Kilic, Z., Altintas, Y.: Discrete-time prediction of chatter stability, cutting forces, and surface location errors in flexible milling systems. J. Manuf. Sci. Eng. 134(6), 061006 (2012)

    Article  Google Scholar 

  12. Henninger, C., Eberhard, P.: Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. Eur. J. Mech. A Solids 27(6), 975–985 (2008)

    Article  MATH  Google Scholar 

  13. Huang, T., Zhang, X., Zhang, X., Ding, H.: An efficient linear approximation of acceleration method for milling stability prediction. Int. J. Mach. Tools Manuf. 74(8), 56–64 (2013)

    Article  Google Scholar 

  14. Insperger, T.: Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng. 55(5), 503–518 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Insperger, T., Stepan, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 61(1), 117–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khasawneh, F.A., Mann, B.P., Butcher, E.A.: A multi-interval Chebyshev collocation approach for the stability of periodic delay systems with discontinuities. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4408–4421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostić, S., Franović, I., Todorović, K., Vasović, N.: Friction memory effect in complex dynamics of earthquake model. Nonlinear Dyn. 73(3), 1933–1943 (2013)

    Article  MathSciNet  Google Scholar 

  18. Li, M., Zhang, G., Huang, Y.: Complete discretization scheme for milling stability prediction. Nonlinear Dyn. 71(1–2), 187–199 (2013)

    Article  MathSciNet  Google Scholar 

  19. Merritt, H.: Theory of self-excited machine tool chatter. J. Eng. Ind. 87, 447–454 (1965)

    Article  Google Scholar 

  20. Niu, J., Ding, Y., Zhu, L., Ding, H.: Runge–kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn. 76(1), 289–304 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Olgac, N., Sipahi, R.: A unique methodology for chatter stability mapping in simultaneous machining. J. Manuf. Sci. Eng. 127(4), 791–800 (2005)

    Article  Google Scholar 

  22. Olgac, N., Sipahi, R.: Dynamics and stability of variable-pitch milling. J. Vib. Control 13(7), 1031–1043 (2007)

    Article  MATH  Google Scholar 

  23. Ozoegwu, C.G., Omenyi, S.N., Ofochebe, S.M.: Hyper-third order full-discretization methods in milling stability prediction. Int. J. Mach. Tools Manuf. 92, 1–9 (2015)

    Article  Google Scholar 

  24. Smith, S., Tlusty, J.: Efficient simulation programs for chatter in milling. Ann. CIRP 42, 463–466 (1993)

    Article  Google Scholar 

  25. Tlusty, J., Polacek, M.: The stability of the machine tool against self-excited vibration in machining. ASME Int. Res. Prod. 1, 465–474 (1963)

    Google Scholar 

  26. Tobias, S.A.: Machine-Tool Vibration. Wiley, Hoboken (1965)

    Google Scholar 

  27. Vasović, N., Kostić, S., Franović, I., Todorović, K.: Earthquake nucleation in a stochastic fault model of globally coupled units with interaction delays. Commun. Nonlinear Sci. Numer. Simul. 38, 117–129 (2016)

    Article  MathSciNet  Google Scholar 

  28. Yi, S., Nelson, P., Ulsoy, A.: Delay differential equations via the matrix lambert W function and bifurcation analysis: application to machine tool chatter. Math. Biosci. Eng. 4(2), 355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang.

Appendix

Appendix

1.1 A. Matrices in Eq. (17)

1.2 B. Program Code

figure b
$$\begin{aligned}&\mathbf {F}_m=\left[ \begin{array}{c} \mathbf {f}_m^1 \\ \mathbf {f}_m^2 \\ \vdots \\ \mathbf {f}_m^E\\ \mathbf {0}\\ \mathbf {0}\\ \mathbf {0} \end{array}\right] ,\quad \mathbf {F}_c=\left[ \begin{array}{c} \mathbf {f}_c^1 \\ \mathbf {f}_c^2 \\ \vdots \\ \mathbf {f}_c^E\\ \mathbf {0}\\ \mathbf {0}\\ \mathbf {0} \end{array}\right] ,\quad \mathbf {F}_k=\left[ \begin{array}{c} \mathbf {f}_k^1 \\ \mathbf {f}_k^2 \\ \vdots \\ \mathbf {f}_k^E\\ \mathbf {0}\\ \mathbf {0}\\ \mathbf {0} \end{array}\right] \\&\mathbf {F}_a=\mathrm{diag}\left[ \begin{array}{l} K_c^1\\ K_c^2\\ \vdots \\ K_c^E\\ 0\\ 0 \end{array}\right] \mathbf {F}_K,\quad \mathbf {F}_1=\left[ \begin{array}{rrrrrr} 0&{}0&{}0&{}\cdots &{}0 \\ \vdots &{}\vdots &{} \vdots &{}\cdots &{} 0\\ 0&{}0&{}0&{}\cdots &{}0\\ 1&{}0&{}0&{}\cdots &{}0\\ 0&{}1&{}0&{}\cdots &{}0 \end{array}\right] \\&\mathbf {F}_{e}=\left[ \begin{array}{c} \mathbf {0} \\ \vdots \\ \mathbf {0}\\ \Lambda \cdot \mathrm{diag} \left[ \begin{array}{l} e^{\lambda _1 t_f}\\ e^{\lambda _2 t_f} \end{array} \right] \cdot \Lambda ^{-1} \left[ \begin{array}{l} \mathbf {v}_{E+1}\\ \mathbf {a}_{E+1} \end{array}\right] \end{array}\right] \end{aligned}$$
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Zhang, X. & Ding, H. A novel approach with smallest transition matrix for milling stability prediction. Nonlinear Dyn 90, 95–104 (2017). https://doi.org/10.1007/s11071-017-3649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3649-0

Keywords

Navigation