Skip to main content
Log in

An Adams-Moulton-based method for stability prediction of milling processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining chatter has detrimental effects on surface quality, tool life, and machining efficiency. Therefore, it is of vital significance to predict and avoid this undesirable phenomenon. This paper presents an Adams-Moulton-based method for the stability prediction of milling operations. Generally, delay differential equations with time-periodic coefficients are applied to model the milling dynamics that include the regenerative effect. To begin with, the tooth-passing period is divided into free vibration time period and forced vibration time period. Subsequently, the Adams-Moulton method is utilized to construct the transition matrix over one period through dividing the forced vibration time period equally into small time intervals. Finally, the milling stability can be obtained by examining the eigenvalues of the transition matrix based on Floquet theory. A comparison with the first-order semi-discretization method and the Simpson-based method is conducted to evaluate the convergence rate and the computation efficiency of the proposed algorithm. The results verify that the proposed method is highly accurate and efficient; thus, it is practical for workshop technicians to select chatter-free machining parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tobias SA (1965) Machine tool vibration. Blackie, Glazgow

    Google Scholar 

  2. Konigsberger F, Tlusty J (1967) Machine tool structures—vol.I: stability against chatter. Pergamon, Elmsford

    Google Scholar 

  3. Altintas Y (2012) Manufacturing automation: metal cutting, mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York

    Google Scholar 

  4. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376

    Article  Google Scholar 

  5. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann 53(2):619–642

    Article  Google Scholar 

  6. Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1(1):35–44

    Article  Google Scholar 

  7. Ding H, Ding Y, Zhu LM (2012) On time-domain methods for milling stability analysis. Chinese Sci Bull 57(33):4336–4345

    Article  Google Scholar 

  8. Smith S, Tlusty J (1993) Efficient simulation programs for chatter in milling. CIRP Ann Manuf Techn 42:463–466

    Article  Google Scholar 

  9. Davies MA, Pratt JR, Dutterer B, Burns TJ (2000) Stability of low radial immersion milling. CIRP Ann Manuf Techn 49:37–40

    Article  Google Scholar 

  10. Davies MA, Pratt JR, Dutterer B, Burns TJ (2002) Stability prediction for low radial immersion milling. J Manuf Sci E-T ASME 124:217–225

    Article  Google Scholar 

  11. Campomanes ML, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. J Manuf Sci E-T ASME 125:416–422

    Article  Google Scholar 

  12. Li ZQ, Liu Q (2008) Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut 21:169–178

    Article  Google Scholar 

  13. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann 44(1):357–362

    Article  Google Scholar 

  14. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466

    Article  Google Scholar 

  15. Bayly PV, Mann BP, Schmitz TL, Peters DA, Stepan G, Insperger T (2002) Effects of radial immersion and cutting direction on chatter instability in end-milling. In: Proceedings of the international mechanical engineers conference and exposition. New Orleans, Paper No.IMECE2002–39116

  16. Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009) Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlin Dyn 4:031003

    Article  Google Scholar 

  17. Insperger T, Stepan G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Biomed Eng 55(5):503–518

    Article  MathSciNet  MATH  Google Scholar 

  18. Insperger T, Stepan G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Biomed Eng 61(1):117–141

    Article  MathSciNet  MATH  Google Scholar 

  19. Insperger T, Stepan G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341

    Article  Google Scholar 

  20. Insperger T, Stepan G (2011) Semi-discretization for time-delay systems: stability and engineering applications. Springer, New York

    Book  MATH  Google Scholar 

  21. Dong XF, Zhang WM, Deng S (2015) The reconstruction of a semi-discretization method for milling stability prediction based on Shannon standard orthogonal basis. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7719-5

    Google Scholar 

  22. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509

    Article  Google Scholar 

  23. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50:926–932

    Article  Google Scholar 

  24. Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62:61–66

    Article  Google Scholar 

  25. Ozoegwu CG, Omenyi SN, Ofochebe SM (2015) Hyper-third order full-discretization methods in milling stability prediction. Int J Mach Tools Manuf 92:1–9

    Article  Google Scholar 

  26. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. J Manuf Sci Eng 133(3):031005

    Article  Google Scholar 

  27. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Milling stability analysis using the spectral method. Sci China Technol Sci 54(12):3130–3136

    Article  MATH  Google Scholar 

  28. Li MZ, Zhang GJ, Huang Y (2013) Complete discretization scheme for milling stability prediction. Nonlinear Dyn 71:187–199

    Article  MathSciNet  Google Scholar 

  29. Xie QZ (2016) Milling stability prediction using an improved complete discretization method. Int J Adv Manuf Technol 83(5–8):815–821

    Article  Google Scholar 

  30. Li ZQ, Yang ZK, Peng YR, Zhu F, Ming XZ (2015) Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol. doi:10.1007/s00170-015-8207-7

    Google Scholar 

  31. Niu JB, Ding Y, Zhu LM, Ding H (2014) Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn 76(1):289–304

    Article  MathSciNet  MATH  Google Scholar 

  32. Ding Y, Zhang XJ, Ding H (2015) A Legendre polynomials based method for stability analysis of milling processes. ASME J Vib Acoust 137(2):024504

    Article  Google Scholar 

  33. Zhang Z, Li HG, Meng G, Liu C (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47

    Article  Google Scholar 

  34. Zhang XJ, Xiong CH, Ding Y, Ding H (2016) Prediction of chatter stability in high speed milling using the numerical differentiation method. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8708-z

    Google Scholar 

  35. Butcher JC (2008) Numerical methods for ordinary differential equations, Second edn. John Wiley & Sons, Chichester

    Book  MATH  Google Scholar 

  36. Peinado J, Ibáñez JE, Arias EV, Hernández V (2010) Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations. Comput Math With Appl 60(11):3032–3045

    Article  MathSciNet  MATH  Google Scholar 

  37. Seong HY, Majid ZA, Ismail F (2013) Solving second-order delay differential equations by direct Adams–Moulton method. Math Probl Eng 113(2):292–319

    MathSciNet  MATH  Google Scholar 

  38. Insperger T (2010) Full-discretization and semi-discretization for milling stability prediction: some comments. Int J Mach Tools Manuf 50(7):658–662

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Tao, J., Li, L. et al. An Adams-Moulton-based method for stability prediction of milling processes. Int J Adv Manuf Technol 89, 3049–3058 (2017). https://doi.org/10.1007/s00170-016-9293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9293-x

Keywords

Navigation