Skip to main content

Advertisement

Log in

Modeling, nonlinear dynamic analysis and control of fractional PMSG of wind turbine

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study aims to reveal the laws of the relationship between fractional-order system and integer-order system. Meanwhile, delayed feedback control is introduced to control the fractional-order PMSG (permanent magnet synchronous generator) model of a wind turbine. First, the fractional-order mathematical model of PMSG is established. Next, numerical simulations under different system orders are given and the system dynamic behaviors are analyzed in detail. Then, the delayed feedback control method is introduced to control the fractional-order PMSG and the control results when different parameters vary are analyzed. Complex dynamics are presented and some interesting phenomena are discovered. It is found that the system order influences the dynamics of the system in many aspects such as chaos pattern, bifurcation behavior, period window, shape and size of strange attractor. The delayed time, feedback gain, feedback limitation, system order can obviously influence the control result except the initial state of the system. Moreover, the feedback limitation has a minimum to successfully control the system to stable states and the system order also has a maximum to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abou-Rayan, A.M., Nayfeh, A.H., Mook, D.T., Nayfeh, M.A.: Nonlinear response of a parametrically excited buckled beam. Nonlinear Dyn. 4(5), 499–525 (1993)

    Article  Google Scholar 

  2. Bagley, R., Calico, R.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)

    Article  Google Scholar 

  3. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80(1–2), 249–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbosa, R.S., Machado, J.A.T.: Describing function analysis of systems with impacts and backlash. Nonlinear Dyn. 29(1–4), 235–250 (2002)

    Article  MATH  Google Scholar 

  5. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. Apidologie 33(33), 233–244 (2015)

    MATH  Google Scholar 

  6. Cafagna, D., Grassi, G.: Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic rssler systems. Nonlinear Dyn. 68(1), 117–128 (2012)

    Article  MATH  Google Scholar 

  7. Cardenas, R., Pena, R., Alepuz, S., Asher, G.: Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Ind. Electron. 60(7), 2776–2798 (2013)

    Article  Google Scholar 

  8. Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R.F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67(1), 893–901 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K., Ford, N.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Ford, N., Freed, A.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emam, S.A., Abdalla, M.M.: Subharmonic parametric resonance of simply supported buckled beams. Nonlinear Dyn. 79(2), 1443–1456 (2015)

    Article  Google Scholar 

  12. Faieghi, M., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72(1–2), 301–309 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. GWEC: Global wind report 2015—annual market update. Technical report, Global Wind Energy Council (2016)

  14. Hbler, A., Lscher, E.: Resonant stimulation and control of nonlinear oscillators. Naturwissenschaften 76(2), 67–69 (1989)

    Article  Google Scholar 

  15. Hemati, N., Kwatny, H.: Bifurcation of equilibria and chaos in permanent-magnet machines. In: Decision and Control, 1993., Proceedings of the IEEE Conference on, vol. 1, pp. 475–479. (1994)

  16. Herbert, G.J., Iniyan, S., Sreevalsan, E., Rajapandian, S.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11(6), 1117–1145 (2007)

    Article  Google Scholar 

  17. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  18. Huberman, B., Lumer, E.: Dynamics of adaptive systems. IEEE Trans. Circuits Syst. 37(4), 547–550 (1990)

    Article  Google Scholar 

  19. Jia, L., Dai, H., Hui, M.: Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems. Chin. Phys. B 19(11), 194–199 (2010)

    Google Scholar 

  20. Jing, Zb, Yu, C., Chen, G.: Complex dynamics in a permanent-magnet synchronous motor model. Chaos Solitons Fractals 22, 831–848 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lan, Y.H., Wang, L.L., Chen, C.X., Lei, D.: Optimal sliding mode robust control for fractional-order systems with application to permanent magnet synchronous motor tracking control. J. Optim. Theory Appl. 1–13 (2015). doi:10.1007/s10957-015-0827-4

  22. Lee, J., Muljadi, E., Sorensen, P., Kang, Y.C.: Releasable kinetic energy-based inertial control of a DFIG wind power plant. IEEE Trans. Sustain. Energy 7(1), 279–288 (2016)

    Article  Google Scholar 

  23. Li, C.L., Yu, S.M., Luo, X.S.: Fractional-order permanent magnet synchronous motor and its adaptive chaotic control. Chin. Phys. B 21(10), 168–173 (2012)

    Google Scholar 

  24. Li, S., Wu, Q., Zhang, Z.: Bifurcation and chaos analysis of multistage planetary gear train. Nonlinear Dyn. 75(1–2), 217–233 (2014)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Li, J.: Stability analysis of fractional order systems based on ts fuzzy model with the fractional order \(\alpha : 0<\alpha <1\). Nonlinear Dyn. 78(4), 2909–2919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z., Park, J., Joo, Y., Zhang, B., Chen, G.: Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 383–387 (2002)

    Article  Google Scholar 

  27. Luo, S., Li, L.: Fractional generalized hamiltonian mechanics and poisson conservation law in terms of combined riesz derivatives. Nonlinear Dyn. 73(1–2), 639–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maia, N.M.M., Silva, J.M.M., Ribeiro, A.M.R.: On a general model for damping. J. Sound Vib. 218(5), 749–767 (1998)

    Article  MATH  Google Scholar 

  29. Matouk, A.E., Elsadany, A.A.: Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear Dyn. 85(3), 1597–1612 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maurin, F., Dedè, L., Spadoni, A.: Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dyn. 81(1), 77–96 (2015)

    Article  MathSciNet  Google Scholar 

  31. Mechter, A., Kemih, K., Ghanes, M.: Backstepping control of a wind turbine for low wind speeds. Nonlinear Dyn. 84(4), 2435–2445 (2016)

    Article  MathSciNet  Google Scholar 

  32. Melicio, R., Mendes, V.M.F., Catalao, J.P.S.: Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology. Energy Convers. Manag. 51(6), 1250–1258 (2010)

    Article  Google Scholar 

  33. Min, F.H., Ma, M.L., Zhai, W., Wang, E.R.: Chaotic control of the interconnected power system based on the relay characteristic function. Acta Phys. Sin. 63(5), 50,504–050,504 (2014)

    Google Scholar 

  34. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, pp. 161–257. Wiley (2007)

  35. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)

    Article  Google Scholar 

  37. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)

    Article  MATH  Google Scholar 

  38. Shokooh, A., Surez, L.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5(3), 331–354 (1999)

    Article  Google Scholar 

  39. Slemon, G.: Electrical machines for variable-frequency drives. Proc. IEEE 82(8), 1123–1139 (1994)

    Article  Google Scholar 

  40. Soukkou, A., Boukabou, A., Leulmi, S.: Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems. Nonlinear Dyn. 85(4), 2183–2206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Thakar, U., Joshi, V., Vyawahare, V.: Design of fractional-order PI controllers and comparative analysis of these controllers with linearized, nonlinear integer-order and nonlinear fractional-order representations of PMSM. Int. J. Dyn. Control 29(1), 1–11 (2016)

    MathSciNet  Google Scholar 

  42. Wang, B., Ding, J., Wu, F., Zhu, D.: Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dyn. 85(4), 2133–2142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wiebe, R., Ehrhardt, D.: Experimental Nonlinear Dynamics and Chaos of Post-Buckled Plates, pp. 199–202. Springer International Publishing, Cham (2016)

    Google Scholar 

  44. Yang, G.L.: Sliding mode variable-structure control of chaos in direct-driven permanent magnet synchronous generators for wind turbines. Acta Phys. Sin. 58(11), 7552–7557 (2009)

    Google Scholar 

  45. Zhang, L., Yu, C., Liu, T.: Control of finite-time anti-synchronization for variable-order fractional chaotic systems with unknown parameters. Nonlinear Dyn. 86(3), 1–14 (2016)

    Article  Google Scholar 

  46. Zheng, W.J., Luo, Y., Chen, Y.Q., Pi, Y.G.: Fractional-order modeling of permanent magnet synchronous motor speed servo system. J. Vib. Control 2010, 61–66 (2015)

  47. Zhongqiang, W.U.: The fault diagnosis for PMSG under chaos conditions: an LMI approach. Acta Phys. Sin. 62(15), 150507 (2013)

Download references

Acknowledgements

Project supported by China Postdoctoral Science Foundation (Grant No: 2013M530426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangquan Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, G., Zhu, J., Diao, L. et al. Modeling, nonlinear dynamic analysis and control of fractional PMSG of wind turbine. Nonlinear Dyn 88, 985–1000 (2017). https://doi.org/10.1007/s11071-016-3289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3289-9

Keywords

Navigation