Skip to main content
Log in

Overview of PMSM control strategies in electric vehicles: a review

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Nowadays, permanent magnet synchronous machines (PMSMs) are preferred by electric vehicle manufacturers due to their attractive features, such as low acoustic noise, high torque/power density and higher efficiency and so on. In addition to these, qualities such as smooth torque production, wide range operation and less malfunctions are expected from electric vehicles. The realization of these features can be improved with the design of PMSM and their control strategies. In this study, PMSM control techniques that have been developed and are being developed in recent years in order to overcome the common challenges such as reduced torque ripples, efficiency optimization and simplified control algorithms are investigated. Therefore, the paper reviews the state-of-the-art drives in particular attention to smoother output torque, extended drive range, simplified control algorithms, less model dependency and so on. Also, recently developed techniques in stator and rotor topologies to reduce torque ripple are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable to this article as no datasets were generated or analyzed during the this study.

Code Availability

Not applicable to this article as no code were used during the current study.

References

  1. Wu Y et al (2022) Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios. Energy 251:123774. https://doi.org/10.1016/j.energy.2022.123774

    Article  Google Scholar 

  2. Ravi SS, Aziz M (2022) Utilization of electric vehicles for vehicle-to-grid services: progress and perspectives. Energies 15(2):589. https://doi.org/10.3390/en15020589

    Article  Google Scholar 

  3. Bhatt A, Ongsakul W, Madhu MN (2022) Optimal techno-economic feasibility study of net-zero carbon emission microgrid integrating second-life battery energy storage system. Energy Convers Manag 266:115825. https://doi.org/10.1016/j.enconman.2022.115825

    Article  Google Scholar 

  4. Mohanraj D et al (2022) Critical aspects of electric motor drive controllers and mitigation of torque ripple-review. IEEE Access 10:73635–73674. https://doi.org/10.1109/ACCESS.2022.3187515

    Article  Google Scholar 

  5. Wang Z et al (2021) Challenges faced by electric vehicle motors and their solutions. IEEE Access 9:5228–5249. https://doi.org/10.1109/ACCESS.2020.3045716

    Article  Google Scholar 

  6. Agamloh E, von Jouanne A, Yokochi A (2020) An overview of electric machine trends in modern electric vehicles. Machines 8(2):20. https://doi.org/10.3390/machines8020020

    Article  Google Scholar 

  7. Ding S, Hou Q, Wang H (2022) Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives. IEEE Trans Energy Convers. https://doi.org/10.1109/TEC.2022.3188630

    Article  Google Scholar 

  8. Pietrzak P, Wolkiewicz M, Orlowska-Kowalska T (2023) PMSM stator winding fault detection and classification based on bispectrum analysis and convolutional neural network. IEEE Trans Ind Electron 70(5):5192–5202. https://doi.org/10.1109/TIE.2022.3189076

    Article  Google Scholar 

  9. Shih KJ et al (2022) Machine learning for inter-turn short-circuit fault diagnosis in permanent magnet synchronous motors. IEEE Trans Magn 58(8):1–7. https://doi.org/10.1109/TMAG.2022.3169173

    Article  Google Scholar 

  10. Zhang Y et al (2021) A rotor position and speed estimation method using an improved linear extended state observer for IPMSM sensorless drives. IEEE Trans Power Electron 36(12):14062–14073. https://doi.org/10.1109/TPEL.2021.3085126

    Article  Google Scholar 

  11. Tian B et al (2022) Freewheeling current-based sensorless field-oriented control of five-phase permanent magnet synchronous motors under insulated gate bipolar transistor failures of a single phase. IEEE Trans Ind Electron 69(1):213–224. https://doi.org/10.1109/TIE.2021.3053891

    Article  Google Scholar 

  12. Wu Z et al (2022) Transfer mechanism analysis of injected voltage harmonic and its effect on current harmonic regulation in FOC PMSM. IEEE Trans Power Electron 37(1):820–829. https://doi.org/10.1109/TPEL.2021.3097103

    Article  Google Scholar 

  13. Kivanc OC, Ozturk SB, Toliyat HA (2022) On-line dead time compensator for PMSM drive based on current observer. Eng Sci Technol Int J 25:100987. https://doi.org/10.1016/j.jestch.2021.04.006

    Article  Google Scholar 

  14. Nasr A et al (2022) Torque-performance improvement for direct torque-controlled PMSM drives based on duty-ratio regulation. IEEE Trans Power Electron 37(1):749–760. https://doi.org/10.1109/TPEL.2021.3093344

    Article  Google Scholar 

  15. Li H et al (2021) Feedback linearization based direct torque control for IPMSMs. IEEE Trans Power Electron 36(3):3135–3148. https://doi.org/10.1109/TPEL.2020.3012107

    Article  Google Scholar 

  16. Bıçak A, Gelen A (2021) Sensorless direct torque control based on seven-level torque hysteresis controller for five-phase IPMSM using a sliding-mode observer. Eng Sci Technol, Int J 24(5):1134–1143. https://doi.org/10.1016/j.jestch.2021.02.004

    Article  Google Scholar 

  17. Deng W, Li S (2021) Direct torque control of matrix converter-fed PMSM drives using multidimensional switching table for common-mode voltage minimization. IEEE Trans Power Electron 36(1):683–690. https://doi.org/10.1109/TPEL.2020.2998686

    Article  Google Scholar 

  18. Biyani V et al (2021) Comparative study of different control strategies in permanent magnet synchronous motor drives. In 2021 IEEE 5th international conference on condition assessment techniques in electrical systems (CATCON). pp 275–281. https://doi.org/10.1109/CATCON52335.2021.9670516

  19. Niu F et al (2016) Comparative evaluation of direct torque control strategies for permanent magnet synchronous machines. IEEE Trans Power Electron 31(2):1408–1424. https://doi.org/10.1109/TPEL.2015.2421321

    Article  Google Scholar 

  20. Du Y et al (2022) Self-adapted model predictive current control for five-phase open-end winding pmsm with reduced switching loss. IEEE Trans Power Electron 37(9):11007–11018. https://doi.org/10.1109/TPEL.2022.3167249

    Article  Google Scholar 

  21. Huang W et al (2022) Open-circuit fault detection in pmsm drives using model predictive control and cost function error. IEEE Trans Transp Electrif 8(2):2667–2675. https://doi.org/10.1109/TTE.2021.3135039

    Article  MathSciNet  Google Scholar 

  22. Wang F et al (2022) Design of model predictive control weighting factors for PMSM using Gaussian distribution-based particle swarm optimization. IEEE Trans Ind Electron 69(11):10935–10946. https://doi.org/10.1109/TIE.2021.3120441

    Article  Google Scholar 

  23. Gong Z et al (2021) Improved deadbeat predictive current control of permanent magnet synchronous motor using a novel stator current and disturbance observer. IEEE Access 9:142815–142826. https://doi.org/10.1109/ACCESS.2021.3119614

    Article  Google Scholar 

  24. Dai S et al (2022) Multiple current harmonics suppression for low-inductance PMSM drives with deadbeat predictive current control. IEEE Trans Ind Electron 69(10):9817–9826. https://doi.org/10.1109/TIE.2022.3144577

    Article  Google Scholar 

  25. Li X et al (2022) Novel deadbeat predictive current control for PMSM with parameter updating scheme. IEEE J Emerg Sel in Power Electron 10(2):2065–2074. https://doi.org/10.1109/JESTPE.2021.3133928

    Article  Google Scholar 

  26. Ou J, Liu Y, Doppelbauer M (2021) Comparison study of a surface-mounted PM rotor and an interior PM rotor made from amorphous metal of high-speed motors. IEEE Trans Ind Electron 68(10):9148–9159. https://doi.org/10.1109/TIE.2020.3026305

    Article  Google Scholar 

  27. Koç M (2022) Unified field oriented controlled drive system for all types of PMSMs considering system nonlinearities. IEEE Access 10:56773–56784. https://doi.org/10.1109/ACCESS.2022.3178104

    Article  Google Scholar 

  28. Özçiflikçi OE, Koç M, Bahçeci S (2021) Maximum torque per ampere strategy in IPM drives for electric vehicles. El-Cezeri 8(3):1405–1415. https://doi.org/10.31202/ecjse.932553

    Article  Google Scholar 

  29. Preindl M, Bolognani S (2013) Model predictive direct torque control With finite control set for PMSM drive systems, Part 1: maximum torque per ampere operation. IEEE Trans Ind Inform 9(4):1912–1921. https://doi.org/10.1109/TII.2012.2227265

    Article  Google Scholar 

  30. Li Z, et al (2020) A comprehensive review of state-of-the-art maximum torque per ampere strategies for permanent magnet synchronous motors. In 2020 10th international electric drives production conference (EDPC). https://doi.org/10.1109/EDPC51184.2020.9388199

  31. Dianov A et al (2022) Review and classification of MTPA control algorithms for synchronous motors. IEEE Trans Power Electron 37(4):3990–4007. https://doi.org/10.1109/TPEL.2021.3123062

    Article  Google Scholar 

  32. Preindl M, Bolognani S (2013) Model predictive direct torque control with finite control set for PMSM drive systems, part 2: field weakening operation. IEEE Trans Ind Inform 9(2):648–657. https://doi.org/10.1109/TII.2012.2220353

    Article  Google Scholar 

  33. Bianchi N et al (2022) A review about flux-weakening operating limits and control techniques for synchronous motor drives. Energies. https://doi.org/10.3390/en15051930

    Article  Google Scholar 

  34. Sun J, Luo X, Ma X (2018) Realization of maximum torque per ampere control for IPMSM based on inductance segmentation. IEEE Access 6:66088–66094. https://doi.org/10.1109/ACCESS.2018.2876572

    Article  Google Scholar 

  35. Wang H et al (2020) Maximum torque per ampere (MTPA) control of IPMSM systems based on controller parameters self-modification. IEEE Trans Veh Technol 69(3):2613–2620. https://doi.org/10.1109/TVT.2020.2968133

    Article  Google Scholar 

  36. Khayamy M, Chaoui H (2018) Current sensorless MTPA operation of interior PMSM drives for vehicular applications. IEEE Trans Veh Technol 67(8):6872–6881. https://doi.org/10.1109/TVT.2018.2823538

    Article  Google Scholar 

  37. Koç M, Özçiflikçi OE (2022) Precise torque control for interior mounted permanent magnet synchronous motors with recursive least squares algorithm based parameter estimations. Eng Sci Technol, Int J 34:101087. https://doi.org/10.1016/j.jestch.2021.101087

    Article  Google Scholar 

  38. Yu H, Wang J, Xin Z (2022) Model predictive control for PMSM based on discrete space vector modulation with RLS parameter identification. Energies. https://doi.org/10.3390/en15114041

    Article  Google Scholar 

  39. Zhu ZQ, Liang D, Liu K (2021) Online parameter estimation for permanent magnet synchronous machines: an overview. IEEE Access 9:59059–59084. https://doi.org/10.1109/ACCESS.2021.3072959

    Article  Google Scholar 

  40. Ahn H et al (2020) A review of state-of-the-art techniques for PMSM parameter identification. J Electr Eng Technol 15(3):1177–1187. https://doi.org/10.1007/s42835-020-00398-6

    Article  Google Scholar 

  41. Sun X et al (2022) Speed sensorless control for IPMSMs using a modified MRAS with gray wolf optimization algorithm. IEEE Trans Transp Electrif 8(1):1326–1337. https://doi.org/10.1109/TTE.2021.3093580

    Article  Google Scholar 

  42. Ding H, Zou X, Li J (2022) Sensorless control strategy of permanent magnet synchronous motor based on fuzzy sliding mode observer. IEEE Access 10:36743–36752. https://doi.org/10.1109/ACCESS.2022.3164519

    Article  Google Scholar 

  43. Filho CJV et al (2021) Observers for high-speed sensorless pmsm drives: design methods, tuning challenges and future trends. IEEE Access 9:56397–56415. https://doi.org/10.1109/ACCESS.2021.3072360

    Article  Google Scholar 

  44. Dhulipati H et al (2021) Torque performance enhancement in consequent pole PMSM based on magnet pole shape optimization for direct-drive EV. IEEE Trans Magn 57:1–7. https://doi.org/10.1109/TMAG.2020.3026581

    Article  Google Scholar 

  45. Dutta R, Pouramin A, Rahman MF (2021) A novel rotor topology for high-performance fractional slot concentrated winding interior permanent magnet machine. IEEE Trans Energy Convers 36(2):658–670. https://doi.org/10.1109/TEC.2020.3030302

    Article  Google Scholar 

  46. Chai W et al (2020) Design of a novel low-cost consequent-pole permanent magnet synchronous machine. IEEE Access 8:194251–194259. https://doi.org/10.1109/ACCESS.2020.3032904

    Article  Google Scholar 

  47. Jeong CL, Kim YK, Hur J (2019) Optimized design of PMSM with hybrid-type permanent magnet for improving performance and reliability. IEEE Trans Ind Appl 55(5):4692–4701. https://doi.org/10.1109/TIA.2019.2924614

    Article  Google Scholar 

  48. Araz HK, Yılmaz M (2020) Design procedure and implementation of a high-efficiency PMSM with reduced magnetmass and torque-ripple for electric vehicles. J Faculty Eng Archit Gazi Univ 35(2):1089–1109

    Google Scholar 

  49. Hu Y et al (2022) Reduction of torque ripple and rotor eddy current losses by closed slots design in a high-speed PMSM for EHA applications. IEEE Trans Magn 58(2):1–6. https://doi.org/10.1109/TMAG.2021.3083664

    Article  MathSciNet  Google Scholar 

  50. Yu Y et al (2023) Analysis of back-EMF harmonics influenced by slot-pole combinations in permanent magnet vernier in-wheel motors. IEEE Trans Ind Electron 70(5):4461–4471. https://doi.org/10.1109/TIE.2022.3189065

    Article  Google Scholar 

  51. Mendizabal M et al (2021) Optimum slot and pole design for vibration reduction in permanent magnet synchronous motors. Appl Sci 11(11):4849. https://doi.org/10.3390/app11114849

    Article  Google Scholar 

  52. Huo J et al (2022) Torque ripple compensation with anti-overvoltage for electrolytic capacitor-less PMSM compressor drives. IEEE J Emerg Sel Top Power Electron 10(5):6148–6159. https://doi.org/10.1109/JESTPE.2022.3175897

    Article  Google Scholar 

  53. Hu M et al (2022) Selective periodic disturbance elimination using extended harmonic state observer for smooth speed control in PMSM drives. IEEE Trans Power Electron 37(11):13288–13298. https://doi.org/10.1109/TPEL.2022.3187125

    Article  Google Scholar 

  54. Liu J, Li H, Deng Y (2018) Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control. IEEE Trans Power Electron 33(4):3655–3671. https://doi.org/10.1109/TPEL.2017.2711098

    Article  Google Scholar 

  55. Zhang Z et al (2022) Torque ripple suppression for permanent-magnet synchronous motor based on enhanced LADRC strategy. J Elect Eng Technol 17:2753–2760. https://doi.org/10.1007/s42835-022-01164-6

    Article  Google Scholar 

  56. Xu J et al (2021) Switching-table-based direct torque control of dual three-phase PMSMS with closed-loop current harmonics compensation. IEEE Trans Power Electron 36(9):10645–10659. https://doi.org/10.1109/TPEL.2021.3059973

    Article  Google Scholar 

  57. Lin X et al (2020) A stator flux observer with phase self-tuning for direct torque control of permanent magnet synchronous motor. IEEE Trans Power Electron 35(6):6140–6152. https://doi.org/10.1109/TPEL.2019.2952668

    Article  Google Scholar 

  58. Hakami S, Lee KB (2020) Four-level hysteresis-based DTC for torque capability improvement of IPMSM fed by three-level NPC inverter. Electronics 9:1558. https://doi.org/10.3390/electronics9101558

    Article  Google Scholar 

  59. Wang X et al (2017) Remedial strategies of T-NPC three-level asymmetric six-phase PMSM drives based on SVM-DTC. IEEE Trans Ind Electron 64(9):6841–6853. https://doi.org/10.1109/TIE.2017.2682796

    Article  Google Scholar 

  60. Petkar SG, Thippiripati VK (2023) A novel duty controlled DTC of a surface pmsm drive with reduced torque and flux ripples. IEEE Trans Ind Electron 70(4):3373–3383. https://doi.org/10.1109/TIE.2022.3181405

    Article  Google Scholar 

  61. Rehman AU et al (2022) Computationally efficient deadbeat direct torque control considering speed dynamics for a surface-mounted PMSM drive. IEEE/ASME Trans Mechatron 27(5):3407–3418. https://doi.org/10.1109/TMECH.2021.3140077

    Article  Google Scholar 

  62. Wang X, Wang Z, Xu Z (2019) A hybrid direct torque control scheme for dual three-phase pmsm drives with improved operation performance. IEEE Trans Power Electron 34(2):1622–1634. https://doi.org/10.1109/TPEL.2018.2835454

    Article  Google Scholar 

  63. Gu X et al (2022) Improved deadbeat predictive control based current harmonic suppression strategy for IPMSM. Energies. https://doi.org/10.3390/en15113943

    Article  Google Scholar 

  64. Lin X et al (2020) Deadbeat direct torque and flux control for permanent magnet synchronous motor based on stator flux oriented. IEEE Trans Power Electron 35(5):5078–5092. https://doi.org/10.1109/TPEL.2019.2946738

    Article  Google Scholar 

  65. Yao C et al (2022) ANN optimization of weighting factors using genetic algorithm for model predictive control of PMSM drives. IEEE Trans Ind Appl 58(6):7346–7362. https://doi.org/10.1109/TIA.2022.3190812

    Article  Google Scholar 

  66. Xu B et al (2022) An improved three-vector-based model predictive current control method for surface-mounted PMSM drives. IEEE Trans Transp Electrif 8(4):4418–4430. https://doi.org/10.1109/TTE.2022.3169515

    Article  Google Scholar 

  67. Yunfei L, Chengning Z (2019) A comparative experimental analysis of PMSM between deadbeat prediction current control and field-oriented control. Energy Proc 158:2488–2493. https://doi.org/10.1016/j.egypro.2019.01.382

    Article  Google Scholar 

  68. Körpe UU et al (2022) Modulated model predictive torque control for interior permanent magnet synchronous machines. El-Cezeri J Sci Eng (ECJSE) 9(2):777–787. https://doi.org/10.31202/ecjse.1008121

    Article  Google Scholar 

  69. Nasr A et al (2022) A low-complexity modulated model predictive torque and flux control strategy for PMSM drives without weighting factor. IEEE J Emerg Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2022.3152652

    Article  Google Scholar 

  70. Andino J et al (2022) Constrained modulated model predictive control for a three-phase three-level voltage source inverter. IEEE Access 10:10673–10687. https://doi.org/10.1109/ACCESS.2022.3144669

    Article  Google Scholar 

  71. Scheer R et al (2022) A virtual prototyping approach for development of PMSM on real-time platforms: a case study on temperature sensitivity. Automot Innov 5(3):285–298. https://doi.org/10.1007/s42154-022-00186-0

    Article  Google Scholar 

  72. Li J et al (2022) Current sensor fault-tolerant control for five-phase PMSM drives based on third-harmonic space. IEEE Trans Ind Electron 69(10):9827–9837. https://doi.org/10.1109/TIE.2022.3163541

    Article  Google Scholar 

  73. Albatran S, Khalaileh ARA, Allabadi AS (2020) Minimizing total harmonic distortion of a two-level voltage source inverter using optimal third harmonic injection. IEEE Trans Power Electron 35(3):3287–3297. https://doi.org/10.1109/TPEL.2019.2932139

    Article  Google Scholar 

  74. Koc M, Emiroglu S, Tamyürek B (2021) Analysis and simulation of efficiency optimized IPM drives in constant torque region with reduced computational burden. Turk J Elec Eng Comput Sci 29:1643–1658. https://doi.org/10.3906/elk-2005-152

    Article  Google Scholar 

  75. Liao W et al (2021) An enhanced SVPWM strategy based on vector space decomposition for dual three-phase machines fed by two DC-source VSIs. IEEE Trans Power Electron 36(8):9312–9321. https://doi.org/10.1109/TPEL.2021.3052913

    Article  MathSciNet  Google Scholar 

  76. Xu J et al (2022) A novel space vector PWM technique with duty cycle optimization through zero vectors for dual three-phase PMSM. IEEE Trans Energy Convers 37(4):2271–2284. https://doi.org/10.1109/TEC.2022.3171705

    Article  Google Scholar 

  77. Liu S et al (2022) Generic carrier-based PWM solution for series-end winding PMSM traction system with adaptative overmodulation scheme. IEEE Trans Transp Electrif. https://doi.org/10.1109/TTE.2022.3193272

    Article  Google Scholar 

  78. Yoo J, Sul SK (2022) Dynamic overmodulation scheme for improved current regulation in PMSM drives. IEEE Trans Power Electron 37(6):7132–7144. https://doi.org/10.1109/TPEL.2022.3140748

    Article  Google Scholar 

  79. Jing R et al (2022) An overmodulation strategy based on voltage vector space division for high-speed surface- mounted PMSM drives. IEEE Trans Power Electron 37(12):15370–15381. https://doi.org/10.1109/TPEL.2022.3195615

    Article  Google Scholar 

  80. Saeed MSR et al (2022) Double-vector-based finite control set model predictive control for five-phase PMSMs with high tracking accuracy and DC-link voltage utilization. IEEE Trans Power Electron 37(12):15234–15244. https://doi.org/10.1109/TPEL.2022.3188578

    Article  Google Scholar 

  81. Wei J et al (2022) The torque ripple optimization of open-winding permanent magnet synchronous motor with direct torque control strategy over a wide bus voltage ratio range. IEEE Trans Power Electron 37(6):7156–7168. https://doi.org/10.1109/TPEL.2022.3146155

    Article  Google Scholar 

  82. Liu T et al (2021) A MTPA control strategy for mono-inverter multi-PMSM system. IEEE Trans Power Electron 36(6):7165–7177. https://doi.org/10.1109/TPEL.2020.3038797

    Article  Google Scholar 

  83. Han Z, Liu J (2021) Comparative analysis of vibration and noise in IPMSM considering the effect of MTPA control algorithms for electric vehicles. IEEE Trans Power Electron 36(6):6850–6862. https://doi.org/10.1109/TPEL.2020.3036402

    Article  Google Scholar 

  84. Li K, Wang Y (2019) Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law. IEEE Trans Ind Inform 15(10):5588–5598. https://doi.org/10.1109/TII.2019.2905929

    Article  Google Scholar 

  85. Jin NZ et al (2022) Virtual signal injection maximum torque per ampere control based on inductor identification. Energies 15:4851. https://doi.org/10.3390/en15134851

    Article  Google Scholar 

  86. Sun T et al (2021) Extended virtual signal injection control for MTPA operation of IPMSM drives with online derivative term estimation. IEEE Trans Power Electron 36(9):10602–10611. https://doi.org/10.1109/TPEL.2021.3057629

    Article  Google Scholar 

  87. Mahmud MH, Wu Y, Zhao Y (2020) Extremum seeking-based optimum reference flux searching for direct torque control of interior permanent magnet synchronous motors. IEEE Trans Transp Electrif 6(1):41–51. https://doi.org/10.1109/TTE.2019.2962327

    Article  Google Scholar 

  88. Lee J, Choi JW (2022) MTPA control method for MIDP SPMSM drive system using angle difference controller and P&O algorithm. IEEE Trans Power Electron 37(12):15382–15396. https://doi.org/10.1109/TPEL.2022.3196400

    Article  Google Scholar 

  89. Chen Z et al (2021) An accurate virtual signal injection control for IPMSM with improved torque output and widen speed region. IEEE Trans Power Electron 36(2):1941–1953. https://doi.org/10.1109/TPEL.2020.3010300

    Article  Google Scholar 

  90. Zhou K et al (2019) Field weakening operation control strategies of PMSM based on feedback linearization. Energies. https://doi.org/10.3390/en12234526

    Article  Google Scholar 

  91. Yoo J, Lee J, Sul SK (2021) Analysis of instability in torque control of sensorless PMSM drives in flux weakening region. IEEE Trans Power Electron 36(9):10815–10826. https://doi.org/10.1109/TPEL.2021.3063720

    Article  Google Scholar 

  92. Liu S et al (2022) Improved flux weakening control strategy for five-phase PMSM considering harmonic voltage vectors. IEEE Trans Power Electron 37(9):10967–10980. https://doi.org/10.1109/TPEL.2022.3164047

    Article  Google Scholar 

  93. Yang H, Zhang Y, Shen W (2022) Predictive current control and field-weakening operation of SPMSM drives without motor parameters and DC voltage. IEEE J Emerg Sel Top Power Electron 10(5):5635–5646. https://doi.org/10.1109/JESTPE.2022.3167273

    Article  Google Scholar 

  94. Liu X, Du Y (2022) Torque control of interior permanent magnet synchronous motor based on online parameter identification using sinusoidal current injection. IEEE Access 10:40517–40524. https://doi.org/10.1109/ACCESS.2022.3167041

    Article  Google Scholar 

  95. Su G et al (2022) Multiparameter identification of permanent magnet synchronous motor based on model reference adaptive system & mdash; simulated annealing particle swarm optimization algorithm. Electronics 11(1):159. https://doi.org/10.3390/electronics11010159

    Article  Google Scholar 

  96. Yang N et al (2022) A new model-free deadbeat predictive current control for PMSM using parameter-free luenberger disturbance observer. IEEE J Emerg Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2022.3192883

    Article  Google Scholar 

  97. Chen T, Chen B (2022) Nonlinear identification of PMSM rotor magnetic linkages based on an improved extended kalman filter. J Sens 2022:9477659. https://doi.org/10.1155/2022/9477659

    Article  Google Scholar 

  98. Li W et al (2022) Extended Kalman filter based inductance estimation for dual three-phase permanent magnet synchronous motors under the single open-phase fault. IEEE Trans Energy Convers 37(2):1134–1144. https://doi.org/10.1109/TEC.2021.3129283

    Article  Google Scholar 

  99. Shi Y, Sun K, Huang L, Li Y (2012) Online identification of permanent magnet flux based on extended kalman filter for IPMSM drive with position sensorless control. IEEE Trans Ind Electron 59(11):4169–4178. https://doi.org/10.1109/TIE.2011.2168792

    Article  Google Scholar 

  100. Quang NK, Hieu NT, Ha QP (2014) FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters. IEEE Trans Ind Electron 61(12):6574–6582. https://doi.org/10.1109/TIE.2014.2320215

    Article  Google Scholar 

  101. Liu X, Zhang G, Mei L, Wang D (2016) Speed estimation with parameters identification of PMSM based on MRAS. J Control, Autom Electr Syst 27:527–534. https://doi.org/10.1007/s40313-016-0253-3

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The concept of the article was determined by OEÖ, MK and SB. The literature research and the preparation of the article were carried out by OEÖ. MK, SB and SE made revisions on the article.

Corresponding author

Correspondence to Osman Emre Özçiflikçi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özçiflikçi, O.E., Koç, M., Bahçeci, S. et al. Overview of PMSM control strategies in electric vehicles: a review. Int. J. Dynam. Control (2023). https://doi.org/10.1007/s40435-023-01314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-023-01314-2

Keywords

Navigation