Skip to main content
Log in

Emergent impacts of quadratic mortality on pattern formation in a predator–prey system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the effects of spatial diffusion in the pattern formation of a predator–prey system with quadratic mortality rate of the predator in the presence of habitat complexity. Using linear stability analysis, the regions of parameter space are plotted, and several kinds of instability regions are identified. Special attention has been given to investigate the selection of spatio-temporal patterns in the neighborhood of a critical parameter using the amplitude equation formalism. Choosing control parameter from the Turing space, the existence conditions for stable patterns are derived using the amplitude equations. Results obtained from theoretical analysis of amplitude equations agree very well with the numerical simulation results near the critical parameter value. Numerical simulations are done to show the existence of different spatio-temporal patterns. Spiral patterns are obtained in the suitable parameter region. It is shown that varying only the death rate of the predator, the spatio-temporal chaos can be controlled. Our investigations show that patterns are sensitive to the variation of habitat complexity and death rate of predator and patterns can be controlled by tuning the death rate of the predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Levin, S.A.: The problem of pattern and scale in ecology: the Robert H MacArthur award lecture. Ecology 73(6), 1943–1967 (1992)

    Article  Google Scholar 

  2. MacArthur, R.H.: Geographical Ecology: Patterns in the Distribution of Species. Princeton University Press, Princeton (1972)

    Google Scholar 

  3. Rietkerk, M., Koppel, J.V.D.: Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23(3), 169–175 (2008)

    Article  Google Scholar 

  4. Solé, R.V., Bascompte, J.: Self-Organization in Complex Ecosystems. Princeton University Press, Princeton (2006)

    Google Scholar 

  5. Turing, A.M.: On the chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  6. Sen, S., Ghosh, P., Riaz, S.S., Ray, D.S.: Spatial periodicity induced by a chemical wave train. Phys. Rev. E 81(1), 017101 (2010)

    Article  Google Scholar 

  7. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112 (1993)

    Article  Google Scholar 

  8. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37(3), 545–559 (1972)

    Article  Google Scholar 

  9. Medvinsky, A.B., Petrovskii, S.B., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, H., Huang, X., Zhang, X.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76(1), 115–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghorai, S., Poria, S.: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity. Chaos Solitons Fractals 91, 421–429 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84(2), 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  13. Chen, J.X., Guo, M.M., Ma, J.: Termination of pinned spirals by local stimuli. EPL (Europhys. Lett.) 113(3), 38004 (2016)

    Article  Google Scholar 

  14. Xu, Y., Jin, W., Ma, J.: Emergence and robustness of target waves in a neuronal network. Int. J. Mod. Phys. B 29(23), 1550164 (2015)

    Article  MATH  Google Scholar 

  15. Qin, H., Wu, Y., Wang, C., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23(1), 164–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, T.B., Ma, J., Zhao, Q., Tang, J.: Force exerted on the spiral tip by the heterogeneity in an excitable medium. EPL (Europhys. Lett.) 104(5), 58005 (2014)

    Article  Google Scholar 

  17. Chattopadhyay, J., Tapaswi, P.K.: Effect of cross-diffusion on pattern formation—a nonlinear analysis. Acta Appl. Math. 48(1), 1–12 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chaudhuri, S., Chattopadhyay, J., Venturino, E.: Toxic phytoplankton-induced spatiotemporal patterns. J. Biol. Phys. 38(2), 331–348 (2012)

    Article  Google Scholar 

  19. Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77(1–2), 31–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chakraborty, K., Manthena, V.: Modelling and analysis of spatio-temporal dynamics of a marine ecosystem. Nonlinear Dyn. 81(4), 1895–1906 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, J., Yang, G., Xi, H., Su, J.: Pattern dynamics of a predator–prey reaction–diffusion model with spatiotemporal delay. Nonlinear Dyn. 81(4), 2155–2163 (2015)

    Article  MathSciNet  Google Scholar 

  22. Newell, A.C., Whitehead, J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38(02), 279–303 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, W., Lin, Y., Rao, F., Zhang, L., Tan, Y.: Pattern selection in a ratio-dependent predator–prey model. J. Stat. Mech.: Theory Exp. 2010(11), P11036 (2010)

    Article  Google Scholar 

  24. Sun, G., Jin, Z., Liu, Q., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chin. Phys. B 17(11), 3936–3941 (2008)

    Article  Google Scholar 

  25. Yuan, S., Xu, C., Zhang, T.: Spatial dynamics in a predator–prey model with herd behavior. Chaos 23(3), 033102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, T., Xing, Y., Zang, H., Han, M.: Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78(1), 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  27. Orth, R.J.: The importance of sediment stability in seagrass communities. Ecol. Mar. Benthos 6, 281–300 (1977)

    Google Scholar 

  28. Stoner, A.W.: Species-specific predation on amphipod crustacea by the pinfish Lagodon rhomboides: mediation by macrophyte standing crop. Mar. Biol. 55(3), 201–207 (1979)

    Article  Google Scholar 

  29. Savino, J.F., Stein, A.: Predator–prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Trans. Am. Fish. Soc. 111(3), 255–266 (1982)

    Article  Google Scholar 

  30. Savino, J.F., Stein, R.A.: Behavioural interactions between fish predators and their prey: effects of plant density. Anim. Behav. 37, 311–321 (1989)

    Article  Google Scholar 

  31. Anderson, O.: Optimal foraging by largemouth bass in structured environments. Ecology 65(3), 851–861 (1984)

    Article  Google Scholar 

  32. Ryer, C.H.: Pipefish foraging Effects of fish size, prey size and altered habitat complexity. Mar. Ecol. Prog. Ser. 48(1), 37–45 (1988)

    Article  Google Scholar 

  33. Pennings, S.C.: Predator–prey interactions in opisthobranch gastropods: effects of prey body size and habitat complexity. Mar. Ecol. Prog. Ser. 62, 95–101 (1990)

    Article  Google Scholar 

  34. Grabowski, J.H.: Habitat complexity disrupts predator–prey interactions but not the trophic cascade on oyster reefs. Ecology 85(4), 995–1004 (2004)

    Article  Google Scholar 

  35. Sahoo, B., Poria, S.: Effects of additional food in a delayed predator–prey model. Math. Biosci. 261, 62–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luckinbill, L.S.: Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54(6), 1320–1327 (1973)

    Article  Google Scholar 

  37. Edwards, A.M., Brindley, J.: Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11(4), 347–370 (1996)

    Article  MATH  Google Scholar 

  38. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  39. Jana, D., Bairagi, N.: Habitat complexity, dispersal and metapopulations: macroscopic study of a predator–prey system. Ecol. Complex. 17, 131–139 (2014)

    Article  Google Scholar 

  40. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  41. Sahoo, B., Poria, S.: Effects of additional food on an ecoepidemic model with time delay on infection. Appl. Math. Comput. 245, 17–35 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Fulton, E.A., Smith, A.D., Johnson, C.R.: Mortality and predation in ecosystem models: is it important how these are expressed? Ecol. Model. 169(1), 157–178 (2003)

    Article  Google Scholar 

  43. Ghorai, S., Poria, S.: Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food. Chaos Solitons Fractals 85, 57–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, W., Liu, Q.X., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75(5), 051913 (2007)

    Article  MathSciNet  Google Scholar 

  45. Dufiet, V., Boissonade, J.: Dynamics of Turing pattern monolayers close to onset. Phys. Rev. E 53(5), 4883 (1996)

    Article  Google Scholar 

  46. Wang, W., Zhang, L., Wang, H., Li, Z.: Pattern formation of a predator–prey system with Ivlev-type functional response. Ecol. Model. 221(2), 131–140 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Poria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Poria, S. Emergent impacts of quadratic mortality on pattern formation in a predator–prey system. Nonlinear Dyn 87, 2715–2734 (2017). https://doi.org/10.1007/s11071-016-3222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3222-2

Keywords

Navigation