Skip to main content

Advertisement

Log in

Modelling and analysis of spatio-temporal dynamics of a marine ecosystem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhao, J., Zhao, M., Yu, H.: Effect of prey refuge on the spatiotemporal dynamics of a modified Leslie–Gower predator–prey system with Holling type III schemes. Entropy 15, 2431–2447 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation. Chapman and Hall/CRC, Florida (2008)

    MATH  Google Scholar 

  3. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956 (2007)

    Article  MathSciNet  Google Scholar 

  4. Pei, Y., Zhang, G., Chen, L.: Species extinction and permanence in a prey–predator model with two-type functional responses and impulsive biological control. Nonlinear Dyn. 52, 71–81 (2008)

    Article  MATH  Google Scholar 

  5. Shi, R., Chen, L.: The study of a ratio-dependent predator–prey model with stage structure in the prey. Nonlinear Dyn. 58, 443–451 (2009)

    Article  MATH  Google Scholar 

  6. Xu, C., Tang, X., Liao, M., He, X.: Bifurcation analysis in a delayed Lokta–Volterra predator–prey model with two delays. Nonlinear Dyn. 66, 169–183 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chakraborty, K., Jana, S., Kar, T.K.: Effort dynamics of a delay-induced prey–predator system with reserve. Nonlinear Dyn. 70, 1805–1829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakraborty, K., Haldar, S., Kar, T.K.: Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure. Nonlinear Dyn. 73, 1307–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29 (1994)

    Article  Google Scholar 

  10. Yang, W., Li, Y.: Dynamics of a diffusive predator–prey model with modified Leslie–Gower and Holling-type III schemes. Comput. Math. Appl. 65(11), 1727–1737 (2013)

    Article  MathSciNet  Google Scholar 

  11. Pascual, M.: Diffusion-induced chaos in a spatial predator–prey system. Proc. Biol. Sci. 251, 1–7 (1993)

    Article  Google Scholar 

  12. Li, J., Gao, W.: A strongly coupled predator–prey system with modified Holling Tanner functional response. Comput. Math. Appl. 60(7), 1908–1916 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Su, H., Dai, B., Chen, Y., Li, K.: Dynamic complexities of a predator–prey model with generalized Holling type III functional response and impulsive effects. Comput. Math. Appl. 56, 1715–1725 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Myerscough, M.R., Darwen, M.J., Hogarth, W.L.: Stability, persistence and structural stability in a classical predator–prey model. Ecol. Model. 89, 31–42 (1995)

    Article  Google Scholar 

  15. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependant predator–prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aly, S., Kim, I., Sheen, D.: Turing instability for a ratio-dependent predator–prey model with diffusion. Appl. Math. Comput. 217, 7265–7281 (2011)

    Article  MathSciNet  Google Scholar 

  17. Wang, J., Qu, X.: Qualitative analysis for a ratio-dependent predator–prey with disease and diffusion. Appl. Math. Comput. 217, 9933–9947 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petrovskii, S.V., Malchow, H.: Waves of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol. 59, 157–174 (2001)

    Article  MATH  Google Scholar 

  19. Zhu, L.-M., Wang, A.-L., Liu, Y.-J., Wang, B.: Stationary patterns of a predator–prey model with spatial effect. Appl. Math. Comput. 216, 3620–3626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, G.-Q., Zhang, J., Song, L.-P., Jin, Z., Li, B.-L.: Pattern formation of a spatial predator–prey system. Appl. Math. Comput. 218, 11151–11162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuwamura, M.: Turing instabilities in preypredator systems with dormancy of predators. J. Math. Biol. (2014). doi:10.1007/s00285-014-0816-5

  22. Chakraborty, K., Das, K., Kar, T.K.: Modeling and analysis of a marine Plankton system with nutrient recycling and diffusion. Complexity (2014). doi:10.1002/cplx.21559

  23. Chaudhuri, S., Roy, S., Chattopadhyay, J.: Phytoplankton–zooplankton dynamics in the ‘presence’ or ’absence’ of toxic phytoplankton. Appl. Math. Comput. 225, 102–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossa, F.D., Fasani, S., Rinaldi, S.: Conditions for patchiness in plankton models. Theor. Popul. Biol. 83, 95–100 (2013)

    Article  Google Scholar 

  25. Jang, S., Baglama, J., Wu, L.: Dynamics of phytoplankton–zooplankton systems with toxin producing phytoplankton. Appl. Math. Comput. 227, 717–740 (2014)

    Article  MathSciNet  Google Scholar 

  26. Rao, F.: Spatiotemporal dynamics in a reaction–diffusion toxic-phytoplankton–zooplankton model. J. Stat. Mech. (2013). doi:10.1088/1742-5468/2013/08/P08014

  27. Luo, J.: Phytoplankton–zooplankton dynamics in periodic environments taking into account eutrophication. Math. Biosci. 245, 126–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Aziz-Alaoui, M.A.: Study of Leslie–Gower-type tritrophic population model. Chaos Solitons Fractals 14, 1275–1293 (2002)

    Article  MathSciNet  Google Scholar 

  30. Bhattacharya, R., Mukhopadhatya, B., Bandopadhaya, M.: Diffusive instability in a prey–predator system with time dependent diffusivity. Int. J. Math. Math. Sci. 66, 4195–4203 (2003)

    Article  MATH  Google Scholar 

  31. Leeds, W.B., Wikle, C.K., Fiechter, J., Brown, J., Milliff, R.F.: Modeling 3-D spatio-temporal biogeochemical processes with a forest of 1-D statistical emulators. Environmetrics (2013). doi:10.1002/env.2187

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their careful reading, constructive comments and helpful suggestions, which have helped us to improve the presentation of this work significantly. First author gratefully acknowledges Director, INCOIS for his encouragement and unconditional help. This is INCOIS contribution number 219. The internship work would have been impossible without Joint Science Academies Summer Fellowship Programme 2013. Second author gladly acknowledges the Joint Science Academies for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Manthena, V. Modelling and analysis of spatio-temporal dynamics of a marine ecosystem. Nonlinear Dyn 81, 1895–1906 (2015). https://doi.org/10.1007/s11071-015-2114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2114-1

Keywords

Navigation