Skip to main content
Log in

Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study is devoted to a class of linear and nonlinear differential equations with fractional-order governing diffusion, Burger’s, Airy’s, KdV, gas dynamic and Fisher’s equations. These equations are used to describe the physical processes of models possessing memory. By employing classical and nonclassical Lie symmetry analysis and some technical calculations, new infinitesimal generators are obtained which give rise to derive the invariant solutions for this class of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang, J.R., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real. 12, 3642–3653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, J.R., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real. 12, 262–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, J.R., Zhou, Y., Wei, W.: Fractional Schrodinger equations with potential and optimal controls. Nonlinear Anal. Real. 13, 2755–2766 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nunno, G.D., Oksendal, B.: Advenced Mathematical Methods for Finance. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Dung, N.T.: Fractional stochastic differential equations with applications to finance. J. Math. Anal. Appl. 397, 334–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  9. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  10. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A \(+\) B \(\rightarrow \) C reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)

    Article  Google Scholar 

  11. Gafiychuk, V.V., Datsko, B.Y.: Pattern formation in a fractional reaction–diffusion system. Phys. A 365, 300–306 (2006)

    Article  Google Scholar 

  12. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vlahos, L., Isliker, H., Kominis, Y., Hizanidis, K.: Normal and anomalous diffusion: a tutorial. In: Bountis, T. (ed.) Order and Chaos, vol. 10. Patras University Press, Patras (2008)

    Google Scholar 

  14. Momani, S.: Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Solitons Fractals 28, 930–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fung, M.K.: KdV equation as an Euler-Poincaré equation. Chin. J. Phys. 35(6), 789–796 (1997)

    Google Scholar 

  17. Younis, M., Ali, S., Mahmood, S.A.: Solitons for compound KdV–Burgers equation with variable coefficients and power law nonlinearity. Nonlinear Dyn. 81, 1191–1196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Adem, A.R., Khalique, C.M.: Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system. Commun. Nonlinear Sci. Numer. Simulat. 17, 3465–3475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Blomker, D., Jentzen, A.: Galerkin approximations for the stochastic Burgers equation. SIAM J. Numer. Anal. 51, 694–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Triki, H., Taha, T.R., Wazwaz, A.M.: Solitary wave solutions for a generalized KdV–mKdV equation with variable coefficients. Math. Comput. Simulat. 80, 1867–1873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X., Feng, Z., Debnath, L., Gao, D.Y.: The Korteweg-de Vries–Burgers equation and its approximate solution. Int. J. Comput. Math. 85, 853–863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Das, S., Kumar, R.: Approximate analytical solutions of fractional gas dynamic equations. Appl. Math. Comput. 217, 9905–9915 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)

    MATH  Google Scholar 

  24. Tuckwell, H.C.: Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  25. Aronson, D.J., Weinberg, H.F.: Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation. Springer, New York (1988)

    Google Scholar 

  26. Bramson, M.D.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531–581 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. El-Ajoua, A., Abu Arquba, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. El-wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurulay, M., Bayram, M.: Approximate analytical solution for the fractional modified KdV by differential transform method. Commun. Nonlinear Sci. Numer. Simulat. 15, 1777–1782 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Safari, M., Ganji, D.D., Moslemi, M.: Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV–Burgers–Kuramoto equation. Comput. Math. Appl. 58, 2091–2097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wazwaz, A.M., Gorguis, A.: An analytical study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 154, 609–620 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Agirseven, D., Ozis, T.: An analytical study for Fisher type equations by using homotopy perturbation method. Comput. Math. Appl. 60, 602–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  34. Bluman, G.W.: Symmetries and Differential Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  35. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Continuous transformation groups of fractional differential equations. Vestnik USATU 9, 125–135 (2007)

    Google Scholar 

  36. Hashemi, M.S., Haji-Badali, A., Vafadar, P.: Group invariant solutions and conservation laws of the Fornberg–Whitham equation. Z. Naturforsch. 69a, 489–496 (2014)

    Google Scholar 

  37. Hashemi, M.S., Nucci, M.C., Abbasbandy, S.: Group analysis of the modified generalized Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simulat. 18, 867–877 (2013)

  38. Grigoriev, Y.N., Ibragimov, N.H., Kovalev, V.F., Meleshko, S.V.: Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  39. Olver, P.J.: Application of Lie Groups to Differential Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  40. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simulat. 18, 2321–2326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bluman, G.W., Cole, J.D.: The general similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MathSciNet  MATH  Google Scholar 

  43. Arrigo, D.J., Beckham, J.R.: Nonclassical symmetries of evolutionary partial differential equations and compatibility. J. Math. Anal. Appl. 289, 55–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bluman, G.W., Tian, S.F., Yang, Z.: Nonclassical analysis of the nonlinear Kompaneets equation. J. Eng. Math. 84, 87–97 (2014)

    Article  MathSciNet  Google Scholar 

  45. Bruzon, M.S., Gandarias, M.L.: Classical and nonclassical symmetries for the Krichever–Novikov equation. Theor. Math. Phys. 168, 875–885 (2011)

    Article  MathSciNet  Google Scholar 

  46. Gandarias, M.L., Bruzon, M.S.: Symmetry analysis and exact solution of some Ostrovsky equations. Theor. Math. Phys. 168, 898–911 (2011)

    Article  MathSciNet  Google Scholar 

  47. Hashemi, M.S., Nucci, M.C.: Nonclassical symmetries for a class of reaction–diffusion equations: the method of heir-equations. J. Nonlinear Math. Phys. 20, 44–60 (2013)

    Article  MathSciNet  Google Scholar 

  48. Gandarias, M.L.: New symmetries for a model of fast diffusion. Phys. Lett. A 286, 153–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gandarias, M.L., Bruzon, M.S.: Nonclassical potential system approach for a nonlinear diffusion equation. J. Nonlinear Math. Phys. 15, 185–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mansfield, E.L.: The nonclassical group analysis of the heat equation. J. Math. Anal. Appl. 231, 526–542 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Arrigo, D.J., Ekrut, D.A., Fliss, J.R., Le, L.: Nonclassical symmetries of a class of Burgers’ systems. J. Math. Anal. Appl. 371, 813–820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Cai, G., Wang, Y., Zhang, F.: Nonclassical symmetries and group invariant solutions of Burgers–Fisher equations. World J. Model. Simulat. 3, 305–309 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, R., Bahrami, F. & Hashemi, M.S. Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations. Nonlinear Dyn 87, 1785–1796 (2017). https://doi.org/10.1007/s11071-016-3152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3152-z

Keywords

Mathematics Subject Classification

Navigation