Skip to main content
Log in

Symmetry analysis and exact solutions of some Ostrovsky equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Ostrovsky, Oceanology, 18, 119–125 (1978).

    Google Scholar 

  2. L. A. Ostrovsky and Yu. A. Stepanyants, “Nonlinear waves in a rotating fluid [in Russian],” in: Nonlinear Waves: Physics and Astrophysics (A. V. Gaponov-Grekhov and M. I. Rabinovich, eds.), Nauka, Moscow (1993), pp. 132–153.

    Google Scholar 

  3. R. H. J. Grimshaw, L. A. Ostrovsky, V. I. Shrira, and Yu. A. Stepanyants, Surv. Geophys., 19, 289–338 (1998).

    Article  ADS  Google Scholar 

  4. O. A. Gilman, R. Grimshaw, and Yu. A. Stepanyants, Stud. Appl. Math., 95, 115–126 (1995).

    MathSciNet  MATH  Google Scholar 

  5. O. A. Gilman, R. Grimshaw, and Yu. A. Stepanyants, Dynam. Atmos. Oceans, 23, 403–411 (1996).

    Article  ADS  Google Scholar 

  6. A. I. Leonov, “The effect of the earth’s rotation on the propagation of weak nonlinear surface and internal long oceanic waves,” in: Fourth Intl. Conf. on Collective Phenomena (J. L. Lebowitz, eds.), Acad. Sci., New York (1981), pp. 150–159.

    Google Scholar 

  7. V. M. Galkin and Yu. A. Astepanyants, J. Appl. Math. Mech., 55, 939–943 (1991).

    Article  MathSciNet  Google Scholar 

  8. Yu. A. Stepanyants, Chaos Solitons Fractals, 28, 193–204 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. V. O. Vakhnenko and E. J. Parkes, Nonlinearity, 11, 1457–1464 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. E. Yusufoğlu and A. Bekir, Chaos Solitons Fractals, 38, 1126–1133 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. L. Tian and J. Yin, Chaos Solitons Fractals, 35, 991–995 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. G. W. Bluman and J. D. Cole, J. Math. Mech., 18, 1025–1042 (1968/69).

    MathSciNet  Google Scholar 

  13. P. A. Clarkson and E. L. Mansfield, SIAM J. Appl. Math., 54, 1693–1719 (1994); arXiv:solv-int/9401002v2 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. A. Kudryashov, Chaos Solitons Fractals, 24, 1217–1231 (2005); arXiv:nlin/0406007v1 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. N. A. Kudryashov and N. B. Loguinova, Appl. Math. Comput., 205, 396–402 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. S. Krasil’shchik and A. M. Vinogradov, Acta Appl. Math., 2, 79–96 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. S. Krasil’shchik and A. M. Vinogradov, Acta Appl. Math., 15, 161–209 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. M. Vinogradov, ed., Symmetries of Partial Differential Equations: Conservation Laws, Applications, Algorithms, Kluwer, Dordrecht (1989).

    Google Scholar 

  19. I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, J. Sov. Math., 55, 1401–1450 (1991).

    Article  Google Scholar 

  20. G. W. Bluman, G. J. Reid, and S. Kumei, J. Math. Phys., 29, 806–811 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. G. W. Bluman and Z. Yan, European J. Appl. Math., 16, 239–261 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. L. Gandarias and M. S. Bruzon, Nonlinear Anal., 71, e1826–e1834 (2009).

    Article  MathSciNet  Google Scholar 

  23. M. L. Gandarias, “New potential symmetries,” in: SIDE III: Symmetries and Integrability of Difference Equations (CRM Proc. Lect. Notes, Vol. 25, D. Levi and O. Ragnisco, eds.), Amer. Math. Soc., Providence, R. I. (2000), pp. 161–165.

    Google Scholar 

  24. M. L. Gandarias, J. Phys. A, 29, 607–633 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Gandarias.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 168, No. 1, pp. 49–64, July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandarias, M.L., Bruzón, M.S. Symmetry analysis and exact solutions of some Ostrovsky equations. Theor Math Phys 168, 898–911 (2011). https://doi.org/10.1007/s11232-011-0073-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0073-3

Keywords

Navigation