Skip to main content
Log in

On the invariant solutions of space/time-fractional diffusion equations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper is concerned with the space/time-fractional diffusion equations using Lie symmetry analysis. We introduce a generalized nonclassical method that is applied to differential equations with fractional order. The existing methods give some classical symmetries while the nonclassical approach will retrieve other symmetries to these equations. New exact solutions to the fractional diffusion equations are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R Hilfer Applications of Fractional Calculus in Physics (Singapore: World Scientific) (2000)

    Book  MATH  Google Scholar 

  2. A A Kilbas, H M Srivastava and J J Trujillo Theory and Application of Fractional Differential Equations (The Netherlands: Elsevier) (2006)

    MATH  Google Scholar 

  3. K Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Germany: Springer) (2010)

    Book  MATH  Google Scholar 

  4. E Barkari, R Metzler and J Klafter Phys. Rev. E 61 132 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. S B Yuste, L Acedo and K Lindenberg Phys. Rev. E 69 036126 (2004)

    Article  ADS  Google Scholar 

  6. J R Wang and Y Zhou Nonlinear Anal. Real World Appl. 12 3642 (2011)

    Article  MathSciNet  Google Scholar 

  7. A R Haghighi, M P Aghababa and M Roohi Int. J. Ind. Math. 6 133 (2014)

    Google Scholar 

  8. J R Wang and Y Zhou Nonlinear Anal. Real World Appl. 12 262 (2011)

    Article  MathSciNet  Google Scholar 

  9. J R Wang, Y Zhou and W Wei Nonlinear Anal. Real World Appl. 13 2755 (2012)

    Article  MathSciNet  Google Scholar 

  10. M G Hall and T R Barrick Magn. Reson. Med. 59 447 (2008)

    Article  Google Scholar 

  11. J P Bouchard and A Georges Phys. Rep. 195 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. R Metzler and J Klafter Phys. Rep. 339 1 (2000)

    Article  ADS  Google Scholar 

  13. R Metzler and J Klafter J. Phys. A Math. Gen. 37 161 (2004)

    Article  ADS  Google Scholar 

  14. A Carpinteri and F Mainardi Fractals and Fractional Calculus in Continuum Mechanics (New York: Springer) (1997)

    Book  MATH  Google Scholar 

  15. V V Gafiychuk and B Y Datsko Physica A 365 300 (2006)

    Article  ADS  Google Scholar 

  16. Y Zhang, D A Benson and D M Reeves Adv. Water Resour. 32 561 (2009)

    Article  ADS  Google Scholar 

  17. L Vlahos, H Isliker, Y Kominis and K Hizanidis Normal and Anomalous Diffusion: A Tutorial. in T. Bountis (ed.) Order and Chaos 10 (Patras: Patras University Press) (2008)

  18. G W Bluman and S Kumei Symmetries and Differential Equations (New York: Springer) (1989)

    Book  MATH  Google Scholar 

  19. G W Bluman, A F Cheviakov and S C Anco Applications of Symmetry Methods to Partial Differential Equations (New York: Springer) (2010)

    Book  MATH  Google Scholar 

  20. P J Olver Application of Lie groups to Differential Equations (New York: Springer) (1986)

    Book  MATH  Google Scholar 

  21. Y N Grigoriev, N H Ibragimov, V F Kovalev and S V Meleshko Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics (Germany: Springer) (2010)

    Book  MATH  Google Scholar 

  22. R K Gazizov, A A Kasatkin and S Y Lukashchuk Vestnik USATU 9 125 (2007)

    Google Scholar 

  23. M N Tufail, A S Butt and A Ali Indian J. Phys. 88(1) 75 (2014)

    Article  ADS  Google Scholar 

  24. K Fakhar, A H Kara, R Morris and T Hayat Indian J. Phys. 87(10) 1035 (2013)

    Article  ADS  Google Scholar 

  25. M S Hashemi, M C Nucci and S Abbasbandy Commun. Nonlinear Sci. Numer. Simul. 18 867 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. M S Hashemi, A Haji-Badali and P Vafadar Z. Naturforsch 69a 489 (2014)

    ADS  Google Scholar 

  27. E Demetriou, N M Ivanova and C Sophocleous J. Math. Anal. Appl. 348 55 (2008)

    Article  MathSciNet  Google Scholar 

  28. N M Ivanova and C Sophocleous J. Comput. Appl. Math. 197 322 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. E Demetriou, M A Christou and C Sophocleous Appl. Math. Comput. 187 1333 (2007)

    MathSciNet  Google Scholar 

  30. M S Hashemi Physica A 417 141 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. G W Wang and T Z Xu Nonlinear Dyn. 76 571 (2014)

    Article  Google Scholar 

  32. G W Wang, X Q Liu and Y Y Zhang Commun. Nonlinear Sci. Numer. Simul. 18 2321 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. R K Gazizov, A A Kasatkin and S Y Lukashchuk Phys. Scr. 136 014016 (2009)

    Article  Google Scholar 

  34. G Wang, A H Kara and K Fakhar Nonlinear Dyn. 82 281 (2015)

    Article  ADS  Google Scholar 

  35. M J Xu, S F Tian, J M Tu and T T Zhang Superlattices Microstruct. 101 415 (2017)

    Article  ADS  Google Scholar 

  36. G W Bluman and J D Cole J. Math. Mech. 18 1025 (1969)

    Google Scholar 

  37. Q M Chang, M F Xiang and X X Jun Appl. Math. Mech. 27(2) 241 (2006)

    Article  MathSciNet  Google Scholar 

  38. D J Arrigo and J R Beckham J. Math. Anal. Appl. 289 55 (2004)

    Article  MathSciNet  Google Scholar 

  39. M S Bruzon and M L Gandarias Theor. Math. Phys. 168 875 (2011)

    Article  Google Scholar 

  40. G W Bluman, S F Tian and Z Yang J. Eng. Math. 84 87 (2014)

    Article  Google Scholar 

  41. M L Gandarias and M S Bruzon Theor. Math. Phys. 168 898 (2011)

    Article  Google Scholar 

  42. M S Hashemi and M C Nucci J. Nonlinear Math. Phy. 20 44 (2013)

    Article  Google Scholar 

  43. M L Gandarias and M S Bruzon J. Nonlinear Math. Phy. 15 185 (2008)

    Article  Google Scholar 

  44. E L Mansfield J. Math. Anal. Appl. 231 526 (1999)

    Article  MathSciNet  Google Scholar 

  45. M L Gandarias Phys. Lett. A 286 153 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Bahrami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, F., Najafi, R. & Hashemi, M.S. On the invariant solutions of space/time-fractional diffusion equations. Indian J Phys 91, 1571–1579 (2017). https://doi.org/10.1007/s12648-017-1063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1063-6

Keywords

PACS Nos

Navigation