Skip to main content
Log in

Bilinear forms and soliton interactions for two generalized KdV equations for nonlinear waves

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Korteweg–de Vries (KdV)-type equations can describe the nonlinear waves in fluids, plasmas, etc. In this paper, two generalized KdV equations are under investigation. Bilinear forms of which are constructed with the Bell polynomials and an auxiliary variable. \(N\)-soliton solutions are given through the Hirota direct method. Via the asymptotic analysis, the soliton interactions of the first generalized KdV equation are analyzed, which turn out to be elastic. Singular breather solutions have been derived from the two-soliton solutions. The collision between soliton and singular breather appears to be elastic, and the bound states of soliton and singular breather are exhibited. Unlike the first one, the other generalized KdV equation can only support the bound states of solitons, for the regular and singular solitons alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MATH  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  3. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  4. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  5. Tian, B., Gao, Y.T.: Cylindrical nebulons, symbolic computation and Bäklund transformation for the cosmic dust acoustic waves. Phys. Plasmas 12, 070703 (2005)

    Article  MathSciNet  Google Scholar 

  6. Gao, Y.T., Tian, B.: On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhys. Lett. 77, 15001 (2007)

    Article  Google Scholar 

  7. Xia, X., Shen, H.T.: Nonlinear interaction of ice cover with shallow water waves in channels. J. Fluid Mech. 467, 259–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Champneys, A.R., Groves, M.D.: A global investigation of solitary-wave solutions to a two-parameter model for water waves. J. Fluid Mech. 342, 199–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grimshaw, R., Joshi, N.: Weakly nonlocal solitary waves in a singularly perturbed Korteweg-de Vries equation. SIAM J. Appl. Math. 55, 124–135 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hunter, J.K., Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Phys. D 32, 253–268 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lax, P.D.: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28, 141–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gelfand, I.M., Dikii, L.A.: Russ. Math. Surv. 30, 77 (1975)

    Article  MathSciNet  Google Scholar 

  13. Karasu-Kalkanli, A., Karasu, A., Sakovich, A., Sakovich, S., Turhan, R.: A new integrable generalization of the Korteweg-de Vries equation. J. Math. Phys. 49, 073516 (2008)

    Article  MathSciNet  Google Scholar 

  14. Ramani, A., Grammaticos, B., Bountis, T.: The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 180, 159–245 (1989)

    Article  MathSciNet  Google Scholar 

  15. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caudrey, P.J., Dodd, R.K., Gibbon, J.D.: A new hierarchy of Korteweg-de Vries equations. Proc. R. Soc. Lond. A 351, 407–422 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kupershmidt, B.A., Wilson, G.: Modifying Lax equations and the second Hamiltonian structure. Invent. Math. 62, 403–436 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Satsuma, J., Hirota, R.: A coupled KdV equation is one case of the four-reduction of the KP hierarchy. J. Phys. Soc. Jpn. 51, 3390–3397 (1982)

    Article  MathSciNet  Google Scholar 

  19. Yao, Y.Q., Zeng, Y.B.: Rosochatius deformed soliton hierarchy with self-consistent sources. Lett. Math. Phys. 86, 193–202 (2008)

  20. Geng, X.G., Xue, B.: N-soliton and quasi-periodic solutions of the KdV6 equations. Appl. Math. Comput. 219, 3504–3510 (2012)

  21. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  23. Satsuma, J.: N-soliton solution of the two-dimensional Korteweg-de Vries equation. J. Phys. Soc. Jpn. 40, 286–290 (1976)

    Article  MathSciNet  Google Scholar 

  24. Li, L.L., Tian, B., Zhang, C.Y., Xu, T.: On a generalized Kadomtsev-Petviashvili equation with variable coefficients via symbolic computation. Phys. Scr. 76, 411–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

    Article  Google Scholar 

  26. Lambert, F., Loris, I., Springael, J., Willox, R.: On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A 27, 325–5334 (1994)

    Article  MathSciNet  Google Scholar 

  27. Lü, X., Tian, B., Qi, F.H.: Bell-polynomial construction of Bäklund transformations with auxiliary independent variable for some soliton equations with one Tau-function. Nonlinear Anal. 13, 1130–1138 (2012)

    Article  MATH  Google Scholar 

  28. Qin, Y., Gao, Y.T., Yu, X., Meng, G.Q.: Bell polynomial approach and N-Soliton solutions for a coupled KdV–mKdV system. Commun. Theor. Phys. 58, 73–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramani, A., Grammaticos, B., Willox, R.: Bilinearization and solutions of the KdV6 equation. Anal. Appl. 6, 401–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Y., Cai, X.N., Xu, H.X.: A note on “The integrable KdV6 equation: multiple soliton solutions and multiple singular soliton solutions”. Appl. Math. Comput. 214, 1–3 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Nonlinear Dyn. 67, 1023–1030 (2012)

    Article  MathSciNet  Google Scholar 

  32. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75, 701–708 (2014)

  33. Jiang, Y., Tian, B., Li, M., Wang, P.: Bright hump solitons for the higher-order nonlinear Schrodinger equation in optical fibers. Nonlinear Dyn. 74, 1053–1063 (2013)

  34. Zhen, H.L., Tian, B., Sun, W.R.: Dynamics of an integrable Kadomtsev-Petviashvili-based system. Appl. Math. Lett. 27, 90–96 (2014)

  35. Zhen, H.L., Tian, B., Wang, Y.F., Zhong, H., Sun, W.R.: Dynamic behavior of the quantum Zakharov-Kuznetsov equations in dense quantum magnetoplasmas. Phys. Plasmas 21, 012304 (2014)

  36. Sun, W.R., Tian, B., Jiang, Y., Zhen, H.L.: Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrodinger equation in an inhomogeneous plasma. Ann. Phys. 343, 215–227 (2014)

  37. Sun, W.R., Tian, B., Zhong, H., Zhen, H.L.: Soliton Interactions for the Three-Coupled Discrete Nonlinear Schrodinger Equations in the Alpha Helical Proteins. Stud. Appl. Math. 132, 65–80 (2014)

  38. Jiang, Y., Tian, B.: Dark and dark-like-bright solitons for a higher-order nonlinear Schrodinger equation in optical fibers. Europhys. Lett. 102, 10010 (2013)

  39. Ma, W.X.: Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, W.X.: Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources. Chaos Soliton Fract. 26, 1453–1458 (2005)

  41. Jaworski, M.: A note on singular solutions of the Korteweg-de Vries equation. Phys. Lett. A 100, 321–324 (1984)

    Article  MathSciNet  Google Scholar 

  42. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the editors, referees and all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, and by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Appendix

Appendix

In the following, we give a brief introduction to the Bell polynomials, which are defined as [25]

$$\begin{aligned}&Y_{nx}\left( g\right) \equiv Y_n\left( g_{1x},g_{2x},\ldots ,g_{nx}\right) =e^{-g}\partial _x^n e^g,\nonumber \\&\quad n=1,2,\ldots , \end{aligned}$$
(44)

where \(g\) is a \(C^\infty \) function of \(x\) and \(g_{rx}\equiv \partial _x^r g\,(r=1,2,\ldots )\). The first three members of the Bell polynomials are

$$\begin{aligned} Y_1\left( g\right)&= g_{1x},\nonumber \\ Y_2\left( g\right)&= g_{2x}+g_x^2,\nonumber \\ Y_3\left( g\right)&= g_{3x}+3g_x g_{2x}+g_x^3 . \end{aligned}$$
(45)

If we take

$$\begin{aligned} g_{rx}= \left\{ \begin{array}{ll} p_{rx},&{}\quad \text {if r is odd}\\ q_{rx},&{}\quad \text {if r is even} \end{array}\right. , \end{aligned}$$
(46)

with \(p\) and \(q\) as both differentiable functions with respect to \(x\), the binary Bell polynomials are obtained, which are also called the \(\fancyscript{Y}\) polynomials. The first three members of the \(\fancyscript{Y}\) polynomials are listed here

$$\begin{aligned} \fancyscript{Y}_{1x}\left( p\,,q\right)&= p_x,\nonumber \\ \fancyscript{Y}_{2x}\left( p\,,q\right)&= q_{2x}+p_{x}^2,\nonumber \\ \fancyscript{Y}_{3x}\left( p\,,q\right)&= p_{3x}+3p_x q_{2x}+p_x^3. \end{aligned}$$
(47)

Similarly, the two-dimensional Bell polynomials can be given as [27]

$$\begin{aligned} Y_{mx,nt}(g)\equiv Y_{m,n}\left( g_{\lambda x,\theta t}\right) = e^{-g}\partial _x^m \partial _t^n e^{g}, \end{aligned}$$
(48)

where \(g\) is a \(C^\infty \) function of \(x\) and \(t\), \(m,\,\lambda \), and \(\theta \) are all positive integers, while \(g_{\lambda x,\theta t}=\partial _x^\lambda \partial _t^\theta g\). Two-dimensional binary Bell polynomials can be given as [27]

$$\begin{aligned}&\fancyscript{Y}_{mx,nt}(g)\equiv Y_{m,n}\left( g_{\lambda x,\theta t}\right) \Bigg | g_{\lambda x,\theta t}\nonumber \\&\ \ = \left\{ \begin{array}{ll} p_{\lambda x,\theta t},&{}\quad \text {if} \,\lambda +\theta \,\text { is odd}\\ q_{\lambda x,\theta t},&{}\quad \text {if} \,\lambda +\theta \,\text { is even} \end{array}\right. , \end{aligned}$$
(49)

with \(p\) and \(q\) as differentiable functions of \(x\) and \(t\), respectively.

When the D-operators act on a pair of the exponentials \(F=e^U\) and \(G=e^V\), they can be linked to the Bell polynomials [27], where \(U\) and \(V\) are the \(C^\infty \) functions of \(x\) and \(t\), while the D-operators are defined as [21]

$$\begin{aligned} \begin{aligned}&D_x^mD_y^lD_t^n a\cdot b\\&\equiv \left( \frac{\partial }{\partial x}-\frac{\partial }{\partial x'}\right) ^m \left( \frac{\partial }{\partial y}-\frac{\partial }{\partial y'}\right) ^l \left( \frac{\partial }{\partial t}-\frac{\partial }{\partial t'}\right) ^n\\&a\left( x,y,t\right) b\left( x',y',t'\right) \bigg |_{x'=x,y'=y,t'=t}, \end{aligned} \end{aligned}$$
(50)

with \(x',\,y'\), and \(t'\) as the formal variables; \(l\) as a positive integer; \(a(x,y,t)\) as a \(C^\infty \) function of \(x,\,y\), and \(t\); and \(b(x',y',t')\) as a \(C^\infty \) function of \(x',\,y'\), and \(t'\).

In the case for the one-dimension situation,

$$\begin{aligned} \left( FG\right) ^{-1}D_x^nF\cdot G\!\equiv \! \fancyscript{Y}_{nx}\left( p\!=\!\ln {F/G},q\!=\!\ln {FG}\right) .\nonumber \\ \end{aligned}$$
(51)

As for the two-dimension case,

$$\begin{aligned}&\left( FG\right) ^{-1}D_x^mD_t^n F\cdot G\equiv \fancyscript{Y}_{mx,nt}\nonumber \\&\quad \times \left( p=\ln {F/G},q=\ln {FG}\right) . \end{aligned}$$
(52)

Subsequently, the \(\fancyscript{P}\) polynomials can be obtained from the \(\fancyscript{Y}\) polynomials when we set \(F=G\). Then from (51) and (52),

$$\begin{aligned}&\frac{D_x^nF\cdot F}{F^2}=\fancyscript{Y}_{nx}\left( p=0,q=2\ln {F}\right) \nonumber \\&\equiv \fancyscript{P}_{nx}\left( q\right) ,\end{aligned}$$
(53)
$$\begin{aligned}&\frac{D_x^m D_t^nF\cdot F}{F^2} = \fancyscript{Y}_{mx,nt}\left( p=0,q=2\ln {F}\right) \nonumber \\&\equiv \fancyscript{P}_{mx,nt}\left( q\right) . \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YH., Gao, YT., Meng, GQ. et al. Bilinear forms and soliton interactions for two generalized KdV equations for nonlinear waves. Nonlinear Dyn 78, 349–357 (2014). https://doi.org/10.1007/s11071-014-1444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1444-8

Keywords

Navigation