Skip to main content
Log in

Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Absolute-Coordinate-Based (ACB) method that combines the Natural Coordinate Formulation (NCF) describing rigid bodies and the Absolute Nodal Coordinate Formulation (ANCF) describing flexible bodies has been widely used to study the dynamics of rigid-flexible multibody system since it exhibits many good features, such as the constancy of the mass matrix of the derived dynamic equation, and the easy description and great simplification of the constraint conditions. In order to achieve these good features, both NCF and ANCF take the vectors, rather than rotational coordinates, to describe the rotation and deformation of the rigid-flexible bodies. In this study, the physical meaning of the components of the generalized force vector corresponding to the vector coordinates is revealed on the basis of both ANCF and NCF. Some new and simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody system are proposed by making full use of the physical meaning of vector coordinates and Lagrange multipliers. All the proposed formulations are defined in the global frame so as to avoid the coordinate transformation. Hence, it can be directly applicable to various types of finite elements of ANCF, including the slope deficient elements. Finally, several typical and practical examples are used to verify the effectiveness of the proposed formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  2. Shabana, A.A.: Definition of the slopes and absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1, 3–12 (2006)

    Article  Google Scholar 

  4. Yoo, W.S., Dmitrochenko, O., Yu, D.: Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2005-84720, Long Beach, CA (2005)

    Google Scholar 

  5. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. García-Vallejo, D., Mikkola, A.M., Escalona, J.S.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  7. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  9. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  10. Abdel-Nasser, A.M., Shabana, A.A.: A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst. Dyn. 26, 57–79 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  12. García De Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34, 75–94 (2003)

    Article  MATH  Google Scholar 

  14. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–67 (2011)

    Article  Google Scholar 

  16. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  17. García De Jalón, J., Callejo, A.: A straight methodology to include multibody dynamics in graduate and undergraduate subjects. Mech. Mach. Theory 46, 168–182 (2011)

    Article  Google Scholar 

  18. Betsch, P., Stein, E.: An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Commun. Numer. Methods Eng. 11, 899–909 (1995)

    Article  MATH  Google Scholar 

  19. Omar, M.A., Shabana, A.A.: A two-dimension shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243, 565–576 (2001)

    Article  Google Scholar 

  20. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  21. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  22. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)

    Google Scholar 

  23. Romero, I., Arribas, J.J.: A simple method to impose rotations and concentrated moments on ANC beams. Multibody Syst. Dyn. 21, 307–323 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Google Scholar 

  25. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  26. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  27. Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: Three dimensional beam element based on a cross sectional coordinate system approach. Nonlinear Dyn. 43, 311–327 (2006)

    Article  MATH  Google Scholar 

  29. Timoshenko, S., Gere, J.: Mechanics of Materials. Van Nostrand Reinhold, New York (1972)

    Google Scholar 

  30. Xu, W., Liu, Y., Liang, B., Wang, X., Xu, Y.: Unified multi-domain modeling and simulation of space robot for capturing a moving target. Multibody Syst. Dyn. 23, 293–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Tian, Q., Hu, H. et al. Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn 69, 127–147 (2012). https://doi.org/10.1007/s11071-011-0251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0251-8

Keywords

Navigation