Skip to main content

Advertisement

Log in

A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The cementitious behavior of Rice Husk Ash (RHA) has caused its possible addition as a replacement material for cement which has been proven to influence the strength of concrete. In this study, Machine Learning (ML) algorithms have been used to predict the compressive strength of RHA-based concrete in a shorter period without any errors. In this regard, six different ML techniques, i.e., Linear Regression, Decision Tree, Gradient Boost, Artificial Neural Network, Random Forest and Support Vector Machines, have been employed to predict the compressive strength using twelve input features and 462 data points. The performances of models have been checked using errors, Pearson correlation coefficient (R2), Taylor’s diagram, box plots and Sensitivity analysis. The outcome of this study indicated that the Decision Tree, Gradient Boost, and Random Forest models had provided better results (R2 > 0.92) than the other algorithms in terms of minimal errors and high accuracy in predicting compressive strength. The sensitivity analysis indicated that the specific gravity of RHA and water–cement ratio significantly (more than 95%) impact the compressive strength of the RHA-based concrete in contrast to the other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Download references

Funding

This research did not receive any specific grant from the public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

AB contributed to conceptualization, data analysis, writing—original draft and preparation, AM contributed to formal analysis and modeling, RS contributed to writing—original draft, review and editing, MP contributed to editing, investigation and review.

Corresponding author

Correspondence to Mahesh Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassi, A., Manchanda, A., Singh, R. et al. A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete. Nat Hazards 118, 209–238 (2023). https://doi.org/10.1007/s11069-023-05998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-05998-9

Keywords

Navigation